Microprocessor
Implementation

using Xilinx FPGA
3

Agenda

V Introduction

V Architecture

V Microarchitecture
V Data path design
V Control unit design

Agenda

V introduction

How To Design This ?

i

- Y | ._.. . - gh“ ".
. - , P e
PR

- - - -
- ok A

i N

Microprocessors

Now, using CAD Tools (Front End)

bBlothing = M ooimer T d=Eih e =
module ==gll0l mealy(x, 7, CLE, BESET): -
input «€;
imput CLE:
imput RESET:
mutpul 5
req Tr

paramatar atart = Z'D00, gotl = 2'k00O1, gocd

reg [1:01 Q: fd stebte wariahleas
oeg [1:0] DIf J4 pExac Ecate loglc oacpiab

P EHL AT E 1
alway= B |x or Q)

b P ax+ayv+
Q =X+Vy+7 ~

came |]
BLAEL: I = 3% 7 gorcd & @Larrn!

L@

b
'| HETY &
:) - >
:_- L METD
-
alndl A 1
:_.-...-.'-} -

And (Back End)

/
/

Floor planning

Placement

- S Routing I

U Microprocessor is the main application of the digital design .
{2 tSGQa Grt1 Lo2dzi RAIAGIE R

Digital Design Flow

Technology Files\ % Technology Files
S) 7 e —
Logi Pl &
Concept Sﬁ,rn?ﬁ:;is Ri:l:fte DRC, LVS Fabrication
Netlist , SDF l
eC rc : (= F GD5 Generation . -
P et Static Tlmlng [B GDS File Testing
5 Analysis s
rds file
Netlist, SDF |
Micro_arch [Static Timing Packaging

Analysis

[Formal

Verification

!

Post Synthesis
Simulation

Product

Formal
\ Verification)

1

- ~

Post Layout
Simulation

Functional
Simulation

Physical Verification ~ Making a product

Abstractions in Modern
Computing Systems

Application
Algorithm
Programming Language
Operating System/Virtual Machines
Instruction Set Architecture
Microarchitecture
Register-Transfer Level

(Gates

Circuits
Devices

Physics

—

| Computer Architecture

Architecture vs. Microarchitecture

“Architectu re” /Instruction Set Architecture:

* Programmer visible state (Memory & Register)
* Operations (Instructions and how they work)

* Execution Semantics (interrupts)

* |Input/Output

« Data Types/Sizes
Microarchitecture/Organization:

* Tradeoffs on how to implement ISA for some metric
(Speed, Energy, Cost)

« Examples: Pipeline depth, number of pipelines, cache
size, silicon area, peak power, execution ordering, bus
widths, ALU widths

Same Architecture
Different Microarchitecture

AMD Phenom X4 Intel Atom
X86 Instruction Set X86 Instruction Set
Quad Core Single Core
125W 2W

Decode 3 Instructions/Cycle/Core
64KB L1 | Cache, 64KB L1 D Cache

Decode 2 Instructions/Cycle/Core
32KB L1 1 Cache, 24KB L1 D Cache

512KB L2 Cache 512KB L2 Cache
Out-of-order In-order
2.6GHz 1.6GHz

Image Credit: Intel

Image Credit: AMD

Agenda

V Introduction
V Architecture

FEE SPARC

AFEE SPARCa32-bit single cycle
Microprocessor which is based on SPARC
Architecture.

A SPARC stands for Scalable Processor
ARChitecture which is designed by Berkeley
University.

A SPARC derived from Reduced Instruction Se
Computer'RISC

Architecture

Features

A 32-bit address space.

A Few and simple instructioformats.

A Fewaddressingnodes

A Triadic registeaddresses

Al tFNBS aoAyiR2sSRE

Architecture

Registers
Generalpurpose registersiur registers
A The IU containd0 _ Window Addressing
generatpurpose32-bit r
registers Windowed Reguster Address r Register Address
A They are partitioned int®@ in[0] - in[7] 4] - 131
globalregisters, plu®- local[0] - local[7] 1{16] - 1[23]
registersets A register set | yyio] - ou7] d 81=1[15
IS further partitioned INto ”’lﬂbﬂl[o] _ “lﬂbﬂl[” 1,: 0: _1.: 7

8 in registers and local
registers.

Registers

Windowedr Registers

window (CWP + 1)

B3]

- ins
4]
1{23]
: locaks
1{16] window CWP
1{15] 1[31])
: yuts s ins
18] 1124]
1{23]
- locals
116]
f{13]
< oults
18]
1[7)
- globals
1]

1[0] 0
31

Architecture

Registers

Overlapping of window

Architecture

WM

w3 ouls

The Windowed r Registers

C IU Control/Status Registers

The32-bit IU control/status registers include the Processor State Register (PSR),
the Window Invalid Mask register (WIM), the Trap Base Register (TBR),
the program counters (PC), and optional, implementataependent Ancillary
StateRegisters (ASRS).

C Processor State Register (PSR)

The32-bit PSR contains various fields that control the processor and hold status informe
It can be modified by the SAVE, RESTORE, Ticc, and RETT instructions, and by all inst
that modify the condition codes. The privileged RDPSR and WRPSR instructions reatkar

the PSR directly

PSK Flelds

impl ver icc eserved |EC|EF| PIL |S|PS|ET| CWP

PSR _integer _cond_ cod@sc

Bits23through20F NB (G KS L! Qa O2yRAGA2YybyO2RS&a®
the arithmetic andogical instructionsvhose names end witthe letters
cc(e.g. ANDcciand by the WRPSR instruction.
The Bicand Ticc instructions cause a transfer of control based on the wdlue
thesebits, which are defined as follows:

Integer Condition Codes (icc) Fields of the PSR

n 4 V C

PSR_negativen)
Bit 23 indicates whether th82-bit2Q& O 2 Y LJ &3ul was nebafive for the last
instruction that modifiedthe iccfield. 1 = negative0 = not negative

PSR_zera)
Bit 22 indicates whether the82-bit ALU result was zero for the last instruction that
modifiedthe iccfield. 1 = zero,0 = nonzero

PSR_overflow]

Bit 21 indicates whether the ALU result was within the range of (was represental@#@-in)
bit2Qa O 2 Y Inlitafion ®rfhe last instructiorthat modifiedthe iccfield.

1 = overflow,0 = no overflow

PSR_carrc)

Bit 20 indicates whether 204 O 2 Y lcirr$ oGt of borrow) occurred for the last
instruction that modified thaccfield. Carryis set on additionf there is a carry out
of bit 31. Carry is set on subtraction if there is borrow into3iit 1 =carry,0 = no carry.

Integer Condition Codes (icc) Fields of the PSR

n & V iy

23 22 21 20

C Instructions

Instructions are encoded in thre&2-bit formats and can be
partitioned into four general categories.
Thereare 72basic instruction operations.

Instructions fall into four basic categories:
1) Load/store

2) Arithmetic/logical/shift

3) Control transfer

4) Read/write control register

X [nstruction Formats
Instructions are encoded in three maj8e-bit formats.

Format 1 (op=1): CALL

op disp30

31 29

Format 2 (op=0): SETHI & Branches (Bicc, FBice, CBccc)

op rd op2 imm22
op | a | cond | op2 disp22
3 29 2 24 21

Format 3 (op=2 or 3): Remaining instructions

op rd op3 rsl =0 asl 182

op rd op3 rsl =1 simm|1 3

Agenda

V Introduction
V Architecture
V Microarchitecture

¢ Concept

As our implementation is considered as IP so, | will explaindheept
to build a micro architecture on a MIPS microprocessor.

C Design Process

We will divide our microarchitectures into two interacting parts: the
data pathand thecontrol

we develop three microarchitectures foine MIPSorocessor
architecture:singlecycle multicycle andpipelined

MIPS is 82-bit architecture, so we will use2P-bit data path
U It containsstructures such as memories, registers, ALUs nanitiplexers.

U Thecontrol unitreceives the current instruction from theata path and
tells the data path how to execute that instruction.

U the controlunit producesmultiplexer select, register enable, and
memory writesignalsTo controlthe operation of thedata path.

How to manage complexity?

A good way to design a complex system is to start with hardware
containingthe state elements.

These elements include the memorimsd thearchitecturalstate
(the program counter and registers).

C%K C|LK | G%K |
FE E;'E -+ A1 WEd RD1 = e
L e A 02 |-
Instruction - % A %
Memory P ME;t:rY
= w3 Hegl'seter - W

C SingleCycle Data path

CLK
CQL: L
VWS
F/PC Instr L
PC| + S Af RD
— | Instruction
Memory . 2 -
A3 -
_ eqister
WD3 Fil

Fetch instruction from memory

Load Instruction

a2

Read source operand from register file

15:0 Signlmm
Sign Extend

Signextendthe immediate

ALUControl,.
010

Zero

ALUResult

—

S@Mmm

Compute memory address

RegWrite

y

2016

-»>
—>

ReadData

Write data back to register file

PCPlus4
+—

Determine address of next instruction for PC

ReqDst ALUSrc ALUConirol2:0 MemtoReg

1 0 lgaras 0
ALUResult
015rcB
—> '
—>
20016 [T
15:11 ,1
WriteReg,;
Result

Datapath enhancements for R-type instruction

