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Electronic Engineering at Menoufyia University. This 
microprocessor was implemented on FPGA kit. 
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CHAPTER ONE 

ARCHITECTURE 

1.1 Introduction  
FEESPARCis a 32-bit single cycle Microprocessor which is based on SPARC 
Architecture. 
  SPARC stands for Scalable Processor ARChitecture which is designed by Berkeley 
University. 

  SPARC derived from Reduced Instruction Set Computer "RISC". 
 

1.2 Features 

Á 32-bit address space. 
Á Few and simple instruction formats Ĳ All instructions are 32 bits wide, 

and are aligned on 32-bit boundaries in memory 
Á There are only three basic instruction formats, and they feature uniform 

placement of opcode and register address fields. Only load and store 
instructions access memory and I/O. 

Á Few addressing modes Ĳ A memory address is given by either Ķregister + 
registerķ or  Ķregister + immediate.ķ 

Á Triadic register addressesĲ Most instructions operate on two register 
operands (or one register and a constant), and place the result in a third 
register. 

Á A large Ķwindowedķ register file Ĳ At any one instant, a program sees 8 
global integer registers plus a 24- register window into a larger register 
file. The windowed registers can be described as a cache of procedure 
arguments, local values, and return addresses. 

1.3Glossary 
  The following paragraphs describe some of the most important words and 
acronyms used : 

Current window 
The block of 24 r registers to which the Current Window Pointer points. 

 



 

Ignored 
Used to describe an instruction field, the contents of which are arbitrary, and which 
has no effect on the execution of the instruction. The contents of an Ķignoredķ field 
will continue to be ignored in future versions of the architecture. See also reserved 
and unused.Implementation Hardware or software that conforms to all the 
specifications of an ISA. 

Instruction Set Architecture (ISA) 
An ISA defines instructions, registers, instruction and data memory, the effect of 
executed instructions on the registers and memory, and an algorithm for controlling 
instruction execution. An ISA does not define clock cycle times, cycles per 
instruction, data paths, etc. 

Next Program Counter (nPC) 
Contains the address of the instruction to be executed next (if a trap does not occur). 

Privileged 
An instruction (or register) that can only be executed (or accessed) when the 
processor is in supervisor mode (when PSR[S]=1). 

 Program Counter (PC) 
Contains the address of the instruction currently being executed by the IU. 

 

rs1, rs2, rd 
Specify the register operands of an instruction. rs1 and rs2 are the source registers; 
rd is the destination register 
. 
Reserved 
Used to describe an instruction or register field which is reserved for definition by 
future versions of the architecture. A reserved field should only be written to zero by 
software. A reserved register field should read as zero in hardware; software 
intended to run on future versions of SPARC should not assume that the field will 
read as zero.  

 

   



 

Supervisor Mode         
A processor state that is active when the S bit of the PSR is set (PSR[S] = 1). 

 
Trap 
A vectored transfer of control to supervisor software through a table whose address 
is given by a privileged IU register (the Trap Base Register (TBR)). 
Unused 
Used to describe an instruction field or register field that is not currently defined by 
the architecture. When read by software, the value of an unused register field is 
undefined. However, since an unused field could be defined by a future version of 

the architecture, an unused field should only be written to zero by software.  
 

User Mode 
  A processor state that is active when the S bit of the PSR is not set (when PSR[S] = 0). 

 

User Application Program 
A program executed with the processor in user mode. Also simply called 
Ķapplication programķ. 

 

 

 

 

 

 

 
 
 



 

1.4 Registers 
There are two types of registers: general-purpose or Ķworkingķ data registers and 
control/status registers. The IUĴs ķInteger unitķ general-purpose registers are called r 
registers. 

 

1.4.1 IU r Registers 

Á The IU contains 40 general-purpose 32-bit r registers. 
Á They are partitioned into 8 global registers, plus 2- register sets. A 

register set is further partitioned into 8 in registers and 8 local 
registers. 

 

 

 

1.4.1.1Windowed r Registers 
At a given time, an instruction can access the 8 globals and a 24- register window 
into the r registers. A register window comprises the 8 in and 8 local registers ofa 
particular register set, together with the 8 in registers of an adjacent register 
set,which are addressable from the current window as out registers. 

 
  The number of windows or register sets, NWINDOWS, ranges from 2 to 32, 
depending on the implementation. The total number of r registers in a given 
implementation is 8 (for the globals
Thus, the minimum number of r registers is 40 (2 sets), and the maximum number 
is 520 (32 sets). 



 

  The current window into the r registers is given by the current window pointer 
(CWP), a 5-bit counter field in the Processor State Register (PSR). The CWP is 
incremented by a RESTORE (or RETT) instruction and decremented by a SAVE 
instruction or a trap. Window overflow and underflow are detected via the window 
invalid mask (WIM) register, which is controlled by supervisor software. 



 

 



 

1.4.1.2Overlapping of window 

Each window shares its ins and outs with the two adjacent windows. The outs of the 
ins of the current window, and the outs in 

the current window are the ins locals are unique to each 
window. 

  An r register with address o o ister 
as (o + 16) does after the CWP is decremented by 1 (modulo NWINDOWS).Likewise, 
a register with address i i 
address (i  

Since CWP arithmetic is performed modulo NWINDOWS, the highest numbered 
implemented window overlaps with window 0. The outs of window 0 are the ins of 

                                 

 

 

 

 

 

 

 

 

 
 
 
 



 

1.4.2IU Control/Status Registers 
  The 32-bit IU control/status registers include the Processor State Register (PSR), the 
Window Invalid Mask register (WIM), the Trap Base Register (TBR), the program 
counters (PC), and optional, implementation-dependent Ancillary State Registers 
(ASRs). 

 

1.4.2.1Processor State Register (PSR) 
  The 32-bit PSR contains various fields that control the processor and hold status 
information. It can be modified by the SAVE, RESTORE, Ticc, and RETT instructions, 
and by all instructions that modify the condition codes. The privileged RDPSR and 
WRPSR instructions read and write the PSR directly. 

 

 

 

The PSR provides the following fields: 

PSR_implementation (impl) 
Bits 31 through 28 are hardwired to identify an implementation or class of 
implementations                     of the architecture. The hardware should not change 
this field inresponse to a WRPSR instruction. Together, the PSR.impl and PSR.ver 
fieldsdefine a unique implementation or class of implementations of the 
architecture. 

 
PSR_version (ver)  
Bits 27 through 24 are implementation-dependent. The ver field is either hardwired 
to identify one or more particular implementations or is a readable and writable 
state field whose properties are implementation-dependent 

 
 
 



 

PSR_integer_cond_codes (icc) 
Bits 23 through 20 are the IUĴs condition codes. These bits are modified by the 
arithmetic and logical instructions whose names end with the letters cc (e.g.,ANDcc), 
and by the WRPSR instruction. The Bicc and Ticc instructions cause a transfer of 
control based on the value of these bits, which are defined as follows: 

 

PSR_negative (n) 
Bit 23 indicates whether the 32-bit 2Ĵs complement ALU result was negative for the 
last instruction that modified the icc field. 1 = negative, 0 = not negative. 

 

PSR_zero (z) 
 Bit 22 indicates whether the 32-bit ALU result was zero for the last instruction that 
modified the icc field. 1 = zero, 0 = nonzero. 

 

PSR_overflow (v) 
  Bit 21 indicates whether the ALU result was within the range of (was representable 
in) 32-bit 2Ĵs complement notation for the last instruction that modified the icc 
field. 1 = overflow, 0 = no overflow. 

 

PSR_carry (c) 
Bit 20 indicates whether a 2Ĵs complement carry out (or borrow) occurred for the 
last instruction that modified the icc field. Carry is set on addition if there is a carry 
out of bit 31. Carry is set on subtraction if there is borrow into bit 31. 1 =carry, 0 = 
no carry. 

 

PSR_reserved 
 Bits 19 through 14 are reserved. When read by a RDPSR instruction, these bits 
deliver zeros. For future compatibility, supervisor software should only issue WRPSR 
instructions with zero values in this field. 

 
 



 

PSR_enable_coprocessor (EC) 
Bit 13 determines whether the implementation-dependent coprocessor is enabled.If 
disabled, a coprocessor instruction will trap. 1 = enabled, 0 = disabled. If an 
implementation does not support a coprocessor in hardware, PSR.EC should always 
read as 0 and writes to it should be ignored. 

 

PSR_enable_floating-point (EF) 
Bit 12 determines whether the FPU is enabled. If disabled, a floating-point 
instruction will trap.                1 = enabled, 0 = disabled. If an implementation does 
not support a hardware FPU, PSR.EF should always read as 0 and writes to it should 
be ignored. 

 

PSR_proc_interrupt_level (PIL) 
Bits 11 (the most significant bit) through 8 (the least significant bit) identify the 
interrupt level above which the processor will accept an interrupt. 

 

PSR_supervisor (S) 
Bit 7 determines whether the processor is in supervisor or user mode. 1 = supervisor 
mode, 0 = user mode. 

 

PSR_previous_supervisor (PS) 
Bit 6 contains the value of the S bit at the time of the most recent trap. 

 

PSR_enable_traps (ET) 
Bit 5 determines whether traps are enabled. A trap automatically resets ET to 0. 
When ET=0, an interrupt request is ignored and an exception trap causes the IUto 
halt execution, which typically results in a reset trap that resumes execution at 
address 0. 1 = traps enabled, 0 = traps disabled. 

 

 



 

PSR_current_window_pointer (CWP) 
Bits 4 (the MSB) through 0 (the LSB) comprise the current window pointer, a 
counter that identifies the current window into the r registers. The hardware 
decrements the CWP on traps and SAVE instructions, and increments it on RESTORE 
and RETT instructions (modulo NWINDOWS). 

 
1.4.2.2 Window Invalid Mask Register (WIM) 
  The Window Invalid Mask register (WIM) is controlled by supervisor software and 
is used by hardware to determine whether a window overflow or underflow trap is 
to be generated by a SAVE, RESTORE, or RETT instruction 

 

There is an active state bit in the WIM for each register set or window in an 
implementation. WIM[n] corresponds to the register set addressed when CWP =n. 

  When a SAVE, RESTORE, or RETT instruction executes, the current value of the 
CWP is compared against the WIM. If the SAVE, RESTORE, or RETT instruction 
would cause the CWP to point to an Ķinvalidķ register set, that is, one whose 
corresponding WIM bit equals 1 (WIM[CWP] = 1), a window_overflow or 
window_underflow trap is caused. 

  The WIM can be read by the privileged RDWIM instruction and written by the 
WRWIM instruction. Bits corresponding to unimplemented windows read as zeroes 
and values written to unimplemented bits are unused. A WRWIM with all bits set to 
1, followed by a RDWIM, yields a bit vector in which the implemented windows 
(and only the implemented windows) are indicated by 1Ĵs. 

The WIM allows for implementations with up to 32 windows. 

 
 



 

1.4.2.3 Trap Base Register (TBR) 
The Trap Base Register (TBR) contains three fields that together equal the address to 
which control is transferred when a trap occurs. 

 

 

The TBR provides the following fields: 

TBR_trap_base_address (TBA) 
  Bits 31 through 12 are the trap base address, which is established by supervisor 
software. It contains the most- significant 20 bits of the trap table address. The TBA 
field is written by the WRTBR instruction. 

 

TBR_trap_type (tt) 
  Bits 11 through 4 comprise the trap type (tt) field. This 8-bit field is written by the 
hardware when a trap occurs, and retains its value until the next trap. It provides an 
offset into the trap table. The WRTBR instruction does not affect the tt field. 

 

TBR_zero (0) 
  Bits 3 through 0 are zeroes. The WRTBR instruction does not affect this field.For 
future compatibility, supervisor software should only issue a WRTBR instruction 
with a zero value in this field. 
 
 
 
 
 
 
 



 

1.4.2.4Ancillary State Registers (ASR) 
SPARC provides for up to 31 Ancillary State Registers (ASRĴs), numbered from 1 to 
31. 
  ASRĴs numbered 1-15 are reserved for future use by the architecture and should 
not be referenced by software. 
  ASRĴs numbered 16-31 are available for implementation-dependent uses, such as 
timers, counters, diagnostic registers, self- test registers, and trap-control registers.A 
particular IU may choose to implement from zero to sixteen of theseASRĴs. The 
semantics of accessing any of these ASRĴs is implementationdependent.Whether a 
particular Ancillary State Register is privileged or not is implementation-dependent. 
  An ASR is read and written with the RDASR and WRASR instructions. A read/write 
ASR instruction is privileged if the accessed register is privileged. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 



 

1.5Instructions 
  Instructions are accessed by the processor from memory and are executed, 
annulled, or trapped. Instructions are encoded in three 32-bit formats and can be 
partitioned into four general categories. There are 72 basic instruction operations. 

 
Instructions fall into four basic categories: 
1) Load/store 

2) Arithmetic/logical/shift 

3) Control transfer 

4) Read/write control register 

 

1.5.1 Instruction Formats 
  Instructions are encoded in three major 32-bit formats. 

 

 

 

 



 

1.5.2 Instruction Fields 
  The instruction fields are interpreted as follows: 

 

op and op2 
These 2-  and 3-bit fields encode the 3 major formats and the format 2 instructions 

 

op Encoding (All Formats) 
Format                    op                                           Instructions 
1                              1                                             CALL 

2                              0                                             Bicc, SETHI 

3                              3                                             memory instructions 

3                              2                                             arithmetic, logical, shift, and 
remaining 

 

op2 Encoding (Format 2) 
op2                                                        Encoding (Format 2) 
0                                                            UNIMP 

1                                                            unimplemented 

2                                                            Bicc 

3                                                            unimplemented 

4                                                            SETHI 

5                                                            unimplemented 

 

 

 



 

rd 
This 5-bit field is the address of the destination  for a load/arithmetic (or store) 
instruction. For an instruction that read/writes a double (or quad), the least 
significant one (or two) bits are unused and should be supplied as zero by software. 

 
a 
  The a bit in a branch instruction annuls the execution of the following instruction 
if the branch is conditional and untaken or if it is unconditional and taken. 

 
cond 
  This 4-bit field selects the condition code(s) to test for a branch instruction. 

 
imm22 
  This 22-bit field is a constant that SETHI places in the upper end of a destination 
register. 

 
disp22 and disp30 
These 30-bit and 22-bit fields are word-aligned, sign-extended, PC- relative 
displacements for a call or branch, respectively. 

 
op3 
  This 6-bit field (together with 1 bit from op) encodes the format 3 instructions. 

 
i 
  The i bit selects the second ALU operand for (integer) arithmetic and load/store 
instructions. If i = 0, the operand is r[rs2]. If i = 1, the operand is simm13, sign-
extended from 13 to 32 bits. 

 
asi 
  This 8-bit field is the address space identifier supplied by a load/store alternate 
instruction. 

 
rs1 
This 5-bit field is the address of the first r register source operand. For an instruction 
that reads a double (or quad), the least significant bit (or 2 bits) are unused and 
should be supplied as zero by software. 

 



 

rs2 
This 5-bit field is the address of the second r register  source operand when i = 0. For 
an instruction that reads a double- length (or quad- length) register sequence, the 
least significant bit (or 2 bits) are unused and should be supplied as zero by 
software. 
simm13 
This 13-bit field is a sign-extended 13-bit immediate value used as the second ALU 
operand for an (integer) arithmetic or load/store instruction when i = 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1.5.2Instruction Definitions 

Instruction Set 
Opcode                                                              Name 
LD (LDA)                                                                Load Word (from Alternate space) 

ST (STA)                                                                 Store Word (into Alternate space) 

SWAP (SWAPA)                                                    Swap r Register with Memory (in 
Alternate space) 

SETHI                                                                      Set High 22 bits of r Register 

NOP                                                                         No Operation 

AND (ANDcc)                                                         And (and modify icc) 

ANDN (ANDNcc)                                                   And Not (and modify icc) 

OR (ORcc)                                                               Inclusive-Or (and modify icc) 

ORN (ORNcc)                                                        Inclusive-Or Not (and modify icc) 

XOR (XORcc)                                                         Exclusive-Or (and modify icc) 

XNOR (XNORcc)                                                   Exclusive-Nor (and modify icc) 

SLL                                                                          Shift Left Logical 

SRL                                                                          Shift Right Logical 

SRA                                                                          Shift Right Arithmetic 

ADD (ADDcc)                                                         Add (and modify icc) 

SUB (SUBcc)                                                           Subtract (and modify icc) 

SAVE                                                                       Save callerĴs window 

RESTORE                                                                Restore callerĴs window 



 

 

Bicc                                                                        Branch on integer condition codes 

CALL                                                                       Call and Link 

JMPL                                                                        Jump and Link 

RETT                                                                        Return from Trap 
Ticc                                                                            Trap on integer condition codes 

RDASR                                                                      Read Ancillary State Register 

RDPSR                                                                       Read Processor State Register 

RDWIM                                                              Read Window Invalid Mask Register 

RDTBR                                                                       Read Trap Base Register 

WRASR                                                                      Write Ancillary State Register 

WRPSR                                                                       Write Processor State Register 

WRWIM                                                           Write Window Invalid Mask Register 

WRTBR                                                                       Write Trap Base Register 

 

 

 

 

 

 

 

 



 

Load Integer Instruction 

 

opcode                                     op3                                    operation 
LD                                               000000                                   Load Word 

LDA                                            010000                                   Load Word from 
Alternate space 

 

 

 

Description: 

  The load integer instructions copy a word from memory into r[rd]. 

  The effective address for a load instruction is Ķr[rs1] + r[rs2]ķ if the i field is zero, or 
       Ķr[rs1] + sign_ext(simm13)ķ if the i field is one. Instructions that load from an 
alternate address space contain the address space identifier to be used for the load in 
the asi field, and must contain zero in the i field or an illegal_instruction trap will 
occur. Load instructions that do not load from an alternate address space access 
either a user data space or system data space, according to the S bit of the PSR. 

 

 

 

 



 

Store Integer Instruction 

 

opcode                                     op3                                    operation 
ST                                                000100                                  Store Word 

STA                                             010100                                  Store Word into 
Alternate space 

 

 

Description: 

  The store integer instructions copy the word from r[rd] into memory. 

  The effective address for a store instruction is Ķr[rs1] + r[rs2]ķ if the i field is zero, 
or Ķr[rs1] + sign_ext(simm13)ķ if the i field is one. Instructions that store to an 
alternate address space contain the address space identifier to be used for the store 
in the asi field, and must contain zero in the i field or an illegal_instruction trap will 
occur. Store instructions that do not store to an alternate address space access either 
a user data space or system data space, according to the S bit of the PSR. 

 

 

 

 

 

 



 

SWAP Register with Memory Instruction 

 

opcode                                      op3                              operation 
SWAP                                          001111                            SWAP register with 
memory 

SWAPA                                       011111                            SWAP register with 
Alternate space memory 

 

 

Description: 

  The SWAP and SWAPA instructions exchange r[rd] with the contents of the word at 
the addressed memory location. 

  The effective address of a SWAP instruction is Ķr[rs1] + r[rs2]ķ if the i field is zero, 
or  

Ķr[rs1] + sign_ext(simm13)ķ if the i field is one. SWAPA must contain zero in the i 
field, or an illegal_instruction trap will occur. The address space identifier used for 
the memory accesses is taken from the asi field. For SWAP, the address space is either 
a user or a system data space, according to the S bit in the PSR. 

 

 

 

 



 

SETHI Instruction 

 

opcode                op                  op2                              operation 
SETHI                  00                    100                                  Set High-Order 22 bits 

 

 

 

Description: 

  SETHI zeroes the least significant 10 bits of Ķr[rd]ķ, and replaces its highorder 22 
bits with the value from its imm22 field. 

  SETHI does not affect the condition codes. 

  A SETHI instruction with rd = 0 and imm22 = 0 is defined to be a NOP instruction. 

 

 

 

 

 

 

 

 

 



 

NOP Instruction 

 

opcode               op                  op2                              operation 
NOP                     00                    100                                  No Operation 

 

 

Description: 

  The NOP instruction changes no program-visible state (except the PC and nPC). 

  Note that NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 
0. 

 

 

 

 

 

 

 

 

 

 



 

Logical Instructions 

 

opcode                                     op3                              operation 
AND                                            000001                           And 

ANDcc                                        010001                           And and modify icc 

ANDN                                         000101                           And Not 

ANDNcc                                      010101                           And Not and modify icc 

OR                                               000010                           Inclusive Or 

ORcc                                            010010                         Inclusive Or and modify icc 

ORN                                             000110                           Inclusive Or Not 

ORNcc                                          010110                 Inclusive Or Not and modify icc 

XOR                                              000011                          Exclusive Or 

XORcc                                           010011                       Exclusive Or and modify icc 

XNOR                                            000111                          Exclusive Nor 

XNORcc                                         010111                    Exclusive Nor and modify icc 

 

 

 

 



 

Description: 

  These instructions implement the bitwise logical operations. They compute Ķr[rs1] 
operation r[rs2]ķ if the i field is zero, or Ķr[rs1] operation sign_ext(simm13)ķ if the i 
field is one, and write the result into r[rd]. 

  ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition 
codes (icc). 

  ANDN, ANDNcc, ORN, and ORNcc logically negate their second operand before 
applying the main (AND or OR) operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Shift Instructions 

 

opcode                                    op3                               operation 
SLL                                             100101                            Shift Left Logical 

SRL                                             100110                            Shift Right Logical 

SRA                                             100111                            Shift Right Arithmetic 

 

 

 

 

 

 

Description: 

  The shift count for these instructions is the least significant five bits of r[rs2] if the i 
field is zero, or the value in shcnt if the i field is one. 

  When i is 0, the most significant 27 bits of the value in r[rs2] are ignored.When i is 
1, bits 5 through 12 of the shift instruction are reserved and should be supplied as 
zero by software. 

  SLL shifts the value of r[rs1] left by the number of bits given by the shift count. 

  SRL and SRA shift the value of r[rs1] right by the number of bits implied by the shift 
count. 



 

  SLL and SRL replace vacated positions with zeroes, whereas SRA fills vacated 
positions with the most significant bit of r[rs1]. No shift occurs when the shift count 
is zero. 

  All of these instructions write the shifted result into r[rd].These instructions do not 
modify the condition codes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Add Instructions 

 

opcode                                    op3                              operation 
ADD                                            000000                           Add 

ADDcc                                        010000                           Add and modify icc 

 

 

Description: 

  ADD and ADDcc compute Ķr[rs1] + r[rs2]ķ if the i field is zero, or Ķr[rs1] + 
sign_ext(simm13)ķ if the i field is one, and write the sum into r[rd]. 

  ADDcc  modifies the integer condition codes (icc). Overflow occurs on addition if 
both operands have the same sign and the sign of the sum is different. 

 

 

 

 

 

 

 

 



 

Subtract Instructions 

 

opcode                                     op3                             operation 
SUB                                             000100                           Subtract 

SUBcc                                         010100                           Subtract and modify icc 

 

 

 

Description: 

  These instructions compute Ķr[rs1 rs2]ķ if the i field is zero,or Ķr[rs1] 
simm13)ķ if the i field is one, and write the difference into r[rd]. 

  SUBcc  modifies the integer condition codes (icc). Overflow occurs on subtraction if 
the operands have different signs and the sign of the difference differs from the sign 
of r[rs1]. 

 

 

 

 

 

 



 

SAVE and RESTORE Instructions 

 

opcode                                     op3                               operation 
SAVE                                          111100                            Save callerĴs window 

RESTORE                                  111101                             Restore callerĴs window 

 

 

 

 

Description: 

  The SAVE instruction subtracts one from the CWP (modulo NWINDOWS) and 
compares this value (new_CWP) against the Window Invalid Mask (WIM) register. 
If the WIM bit corresponding to the new_CWP is 1, that is, (WIM and 2new_CWP) = 
1, then a window_overflow trap is generated. If the WIM bit corresponding to the 
new_CWP is 0, then no window_overflow trap is generated and new_CWP is 
written into CWP. This causes the current w
thereby saving the callerĴs window. 

  The RESTORE instruction adds one to the CWP (modulo NWINDOWS) and 
compares this value (new_CWP) against the Window Invalid Mask (WIM) register. 
If the WIM bit corresponding to the new_CWP is 1, that is, (WIM and 2new_CWP) = 
1, then a window_underflow trap is generated. If the WIM bit corresponding to the 
new_CWP = 0, then no window_underflow trap is generated and new_CWP is 

rrent window, 
thereby restoring the callerĴs window. 



 

Branch on Integer Condition Codes Instructions 

 

opcode                    cond                    operation                                     icc test 
BNE                          1001                      Branch on Not Equal                              not Z 

BE                             0001                      Branch on Equal                                     Z 

BG                            1010                       Branch on Greater                                  not 
(Z or (N xor V)) 

BCS                          0101                       Branch on Carry Set C 

 

 

 

Description: 

  Conditional Bicc instructions evaluate the integer condition codes (icc), according 
to the cond field of the instruction.If Ķtrueķ, the branch is taken, that is, the 
instruction causes a PC-relative, delayed control transfer to the address ĶPC + (4 

disp22))ķ. If Ķfalseķ, the branch is not taken. 

 

 

 

 

 

 



 

Call and Link Instruction 

 

opcode                                 op                                      operation 
CALL                                     01                                           Call and Link 

 

 

 

Description: 

  The CALL instruction causes an unconditional, delayed, PC- relative control transfer 
to ad disp30)ķ. Since the word displacement (disp30) field is 30 bits 
wide, the target address can be arbitrarily distant. The PC- relative displacement is 
formed by appending two low-order zeros to the instructionĴs 30-bit word 
displacement field. 

  The CALL instruction also writes the value of PC, which contains the address of the 
CALL, into r[15] (out register 7). 

 

 

 

 

 

 

 

 



 

Jump and Link Instruction 

 

opcode                                     op3                               operation 
JMPL                                           111000                            Jump and Link 

 

 

 

Description: 

  The JMPL instruction causes a register- indirect delayed control transfer to the 
address given by Ķr[rs1] + r[rs2]ķ if the i field is zero, or Ķr[rs1] + sign_ext(simm13)ķ 
if the i field is one. 

  The JMPL instruction copies the PC, which contains the address of the JMPL 
instruction, into register r[rd]. 

 

 

 

 

 

 

 



 

Return from Trap Instruction 

 

opcode                                      op3                              operation 
RETT                                           111001                            Return from Trap 

 

 

 

Description: 
  RETT is used to return from a trap handler. Under some circumstances, RETT may 
itself cause a trap. If a RETT instruction does not cause a trap, it (1) adds 1 to the 
CWP                          (modulo   NWINDOWS), (2) causes a delayed control transfer 
to the target address, (3) restores the S field of the PSR from the PS field, and (4) sets 
the ET field of the PSR to 1. The target address is Ķr[rs1] + r[rs2]ķ if the i field is zero, 
or Ķr[rs1] + sign_ext(simm13)ķ if the i field is one. 
 

 

 

 

 

 

 



 

Trap on Integer Condition Codes Instruction 

 

opcode                   cond                    operation                            cc test 
TNE                          1001                  Trap on Not Equal              not Z 

TE                             0001                  Trap on Equal                             Z 

TG                            1010                   Trap on Greater               not (Z or (N xor V)) 

TCS                          0101                    Trap on Carry Set                       C 

 

 

 

Description: 
  A Ticc instruction evaluates the integer condition codes (icc) according to the cond 
field of the instruction, producing either a Ķtrueķ or Ķfalseķ result.If Ķtrueķ and no 
higher priority exceptions or interrupt requests are pending, then a trap_instruction 
trap is generated. If Ķfalseķ, a trap_instruction trap does not occur and the 
instruction behaves like a NOP. 
  If a trap_instruction trap is generated, the tt field of the Trap Base Register (TBR) is 
written with 128 plus the least significant seven bits of Ķr[rs1] + r[rs2]ķ if the i field 
is zero, or 128 plus the least significant seven bits of Ķr[rs1] + sign_extķ if the i field 
is one. 

  After a taken Ticc, the processor enters supervisor mode, disables traps,decrements 
the CWP (modulo NWINDOWS), and saves PC and nPC into r[17] and r[18] (local 
registers 1 and 2) of the new window. 



 

Read State Register Instructions 

 

opcode                               op3                  rs1                    operation 
RDPSR                                  101001               0                       Read Processor State 
Register 

RDWIM                                101010               1                       Read Window Invalid 
Mask Register 

RDTBR                                 101011               2                       Read Trap Base Register 

RDASR                                 101000               3                       Read Ancillary State 
Register 

 

 

 

Description: 

  These instructions read the specified IU state register into r[rd]. 

  Ancillary state registers may include (for example) timer, counter, diagnostic, self-
test, and trapcontrol registers. 

 

 

 

 

 



 

Write State Register Instructions 

 

opcode                              op3                  rs1                      operation 
WRPSR                                110001                0                          Write Processor State 
Register 

WRWIM                              110010                1                           Write Window 
Invalid Mask Register 

WRTBR                               110011                2                           Write Trap Base 
Register 

WRASR                               110000                3                           Write Ancillary State 
Register  

 

 

 

Description: 

  WRPSR, WRWIM, WRASR, and WRTBR write Ķr[rs1] xor r[rs2]ķ if the I field is zero, 
or Ķr[rs1] xor sign_ext(simm13)ķ if the i field is one, to thewritable fields of the 
specified IU state register. 

  Ancillary state registers may include (for example) timer, counter, diagnostic, self-
test, and trapcontrol registers. 

 

 



 

CHAPTER TWO 

MICROARCHITECTURE 

2.1  INTRODUCTION  

In  this  chapter,  you  will  learn  how  to  piece  together  a  MIPS  micro-processor. 
 Indeed,  you  will  puzzle  out  three  different  versions,  each  with different trade-
offs between performance, cost, and complexity.  
To  the  uninitiated,  building  a  microprocessor  may  seem  like  black magic.  But  
it  is  actually  relatively  straightforward,  and  by  this  point  you have learned 
everything you need to know. Specifically, you have learned to design combinational 
and sequential logic given functional and timing specifications.  You  are  familiar  
with  circuits  for  arithmetic  and  memory.  
And  you  have  learned  about  the  MIPS  architecture,  which  specifies  the 
programmer's  view  of  the  MIPS  processor  in  terms  of  registers,  instruc- tions, 
and memory.  
This   chapter   covers   microarchitecture,   which   is   the   connection between 
logic and architecture. Microarchitecture is the specific arrangement  of  registers,  
ALUs,  finite  state  machines  (FSMs),  memories,  and other  logic  building  blocks  
needed  to  implement  an  architecture.  A  particular  architecture,  such  as  MIPS, 
 may  have  many  different  microarchitectures,    each    with    different    trade-
offs    of    performance,    cost,    and complexity.  They  all  run  the  same  
programs,  but  their  internal  designs vary   widely.   We   will   design   three   
different   microarchitectures   in   this chapter to illustrate the trade-offs.  
This  chapter  draws  heavily  on  David  Patterson  and  John  Hennessy's classic  
MIPS  designs  in  their  text  Computer  Organization  and  Design. They have 
generously shared their elegant designs, which have the virtue of  illustrating  a  real 
 commercial  architecture  while  being  relatively  simple and easy to understand.  
 

2.1.1   Architectural State and Instruction Set  

Recall  that  a  computer  architecture  is  defined  by  its  instruction  set  and 
architectural state. The architectural state for the MIPS processor consists of  the 
program counter and the 32 registers. Any MIPS microarchitecture must contain all 
of this state. Based on the current architectural state, the processor executes a 
particular instruction with a particular set of data to produce   a   new   



 

architectural   state.   Some   microarchitectures   contain additional  
nonarchitectural  state  to  either  simplify  the  logic  or  improve performance; we 
will point this out as it arises.  
To  keep  the  microarchitectures  easy  to  understand,  we  consider  only a subset 
of the MIPS instruction set. Specifically, 

 
We handle the following instructions: 
R- type arithmetic/logic instructions: add, sub, and, or, slt 
Memory instructions: lw, sw 
Branches: beq 

 
After  building  the  microarchitectures  with  these  instructions,  we  extend them  
to  handle addi  and j. These  particular  instructions  were  chosen because they are 
sufficient to write many interesting programs. Once you understand  how  to  
implement  these  instructions,  you  can  expand  the hardware to handle others.  

 
2.1.2  Design Process  
We   will   divide   our   microarchitectures   into   two   interacting   parts:   the 
datapath  and  the  control.  The  datapath  operates  on  words  of  data.  It contains  
structures  such  as  memories,  registers,  ALUs,  and  multiplexers.  
MIPS  is  a  32-bit  architecture,  so  we  will  use  a  32-bit  datapath.  The  control  
unit  receives  the  current  instruction  from  the  datapath  and  tells  the datapath  
how  to  execute  that  instruction.  Specifically,  the  control  unit produces 
multiplexer select, register enable, and memory write signals to control the 
operation of the datapath.  
A  good  way  to  design  a  complex  system  is  to  start  with  hardware containing  
the  state  elements.  These  elements  include  the  memories  and the  architectural  
state  (the  program  counter  and  registers).  Then,  add blocks of combinational 
logic between the state elements to compute the new state based on the current state. 
The instruction is read from part of memory;   load   and   store   instructions   then  
 read   or   write   data   from another  part  of  memory.  Hence,  it  is  often  
convenient  to  partition  the overall  memory  into  two  smaller  memories,  one  
containing  instructions and  the  other  containing  data.  Figure  7.1  shows  a  
block  diagram  with the four state elements: the program counter, register file, and 
instruction and data memories.  
In  Figure  7.1,  heavy  lines  are  used  to  indicate  32-bit  data  busses.  



 

Medium  lines  are  used  to  indicate  narrower  busses,  such  as  the  5-bit address 
busses on the register file. Narrow blue lines are used to indicatecontrol  signals,  
such  as  the  register  file  write  enable.  We  will  use  this  convention throughout 
the chapter to avoidcluttering diagrams with bus widths. Also, state elements usually 
have a reset input to put them into a known state at start-up. Again, to save clutter, 
this reset is not shown.  
The  program  counter  is  an  ordinary  32-bit  register.  Its  output,  PC, points  to  
the  current  instruction.  Its  input,  PC_,  indicates  the  address  of the next 
instruction.  
The  instruction  memory  has  a  single  read  port.  1  It  takes  a  32-bit instruction 
 address  input,  A,  and  reads  the  32-bit  data  (i.e.,  instruction) from that address 
onto the read data output, RD.  
The 32-element _ 32-bit register file has two read ports and one write port. The 
read ports take 5-bit address inputs, A1 and A2, each specifying one  of  2  5 _ 32  
registers  as  source  operands.  They  read  the  32-bit  register values onto read 
data outputs RD1 and RD2, respectively. The write port takes  a  5-bit address  input, 
 A3;  a  32-bit  write  data  input,  WD;  a  write enable  input,  WE3;  and  a  clock.  
If  the  write  enable  is  1,  the  register  file writes the data into the specified register 
on the rising edge of the clock.  
The  data  memory  has  a  single  read/write  port.  If  the  write  enable, WE,  is  1,  
it  writes  data  WD  into  address  A  on  the  rising  edge  of  the clock. If the write 
enable is 0, it reads address A onto RD.  
The  instruction  memory,  register  file,  and  data  memory  are  all  read 
combinationally.  In  other  words,  if  the  address  changes,  the  new  data appears 
 at  RD  after  some  propagation  delay;  no  clock is  involved.  They are  written  
only  on  the  rising  edge  of  the  clock.  In  this  fashion,  the  state of  the  system  is 
 changed  only  at  the  clock  edge.  The  address,  data,  and write   enable   must   
setup   sometime   before   the   clock   edge   and   must remain stable until a hold 
time after the clock edge.  
Because the state elements change their state only on the rising edge of the  clock,  
they  are  synchronous  sequential  circuits.  The  microprocessor  is built  of  
clocked  state  elements  and  combinational  logic,  so  it  too  is  a synchronous  
sequential  circuit.  Indeed,  the  processor  can  be  viewed  as  a giant  finite  state  
machine,  or  as  a  collection  of  simpler  interacting  state  machines.  

 

 



 

2.1.3   MIPS Microarchitectures  

In this chapter, we develop three microarchitectures for the MIPS processor  
architecture:  single-cycle,  multicycle,  and  pipelined.  They  differ  in  
the   way   that   the   state   elements   are   connected   together  and  in  the  
amount of nonarchitectural state.  
The  single-cycle  microarchitecture  executes  an  entire  instruction in   one   cycle. 
  It   is   easy   to   explain   and   has   a   simple   control   unit.  
Because  it  completes  the  operation  in  one  cycle,  it  does  not  require any  
nonarchitectural  state.  However,  the  cycle  time  is  limited  by  the slowest  
instruction.  
The  multicycle  microarchitecture  executes  instructions  in  a  series  of  shorter  
cycles.  Simpler  instructions  execute  in  fewer  cycles  than  complicated  ones. 
Moreover, the multicycle microarchitecture reduces the hardware   cost   by   
reusing   expensive   hardware   blocks   such   as   adders   and  memories.   For   
example,   the   adder   may   be   used   on   several   different cycles  for  several  
purposes  while  carrying  out  a  single  instruction.  The multicycle  microprocessor 
 accomplishes  this  by  adding  several  nonarchitectural  registers  to  hold  
intermediate  results.  The  multicycle  processor executes  only  one  instruction  at  
a  time,  but  each  instruction  takes  multi-   
ple clock cycles.  
The pipelined microarchitecture applies pipelining to the single-cycle 
microarchitecture.  It  therefore  can  execute  several  instructions  simultaneously,  
 improving   the   throughput   significantly.   Pipelining   must   add  logic  to  
handle  dependencies  between  simultaneously  executing  instructions. It also 
requires nonarchitectural pipeline registers. The added  logic and  registers  are  
worthwhile;  all  commercial  high-performance  processors use pipelining today.  
We  explore  the  details  and  trade-offs  of  these  three  microarchitectures  in  the 
 subsequent  sections.  At  the  end  of  the  chapter,  we  briefly mention  additional  
techniques  that  are  used  to  get  even  more  speed  in modern high-performance 
microprocessors.  

 

2.2  PERFORMANCE ANALYSIS  

As  we  mentioned,  a  particular  processor  architecture  can  have  many 
microarchitectures  with  different  cost  and  performance  trade-offs.  The cost  
depends  on  the  amount  of  hardware  required  and  the  implementation  



 

technology.  Each  year,  CMOS  processes  can  pack  more  transistors on a chip for 
the same amount of money, and processors take advantage  
of  these  additional  transistors  to  deliver  more  performance.  Precise  cost 
calculations  require  detailed  knowledge  of  the  implementation  technology,  but  
in  general,  more  gates  and  more  memory  mean  more  dollars. 
This section lays the foundation for analyzing performance.  
There  are  many  ways  to  measure  the  performance  of  a  computer system,   and 
  marketing   departments   are   infamous   for   choosing   the  method  that  makes 
 their  computer  look  fastest,  regardless  of  whether the  measurement  has  any  
correlation  to  real  world  performance.  For example,  Intel  and  Advanced  Micro 
 Devices  (AMD)  both  sell  compatible    microprocessors    conforming    to    the    
IA-32    architecture.    Intel Pentium   III   and   Pentium   4   microprocessors   were 
  largely   advertised according   to   clock   frequency   in   the   late   1990s   and   
early   2000s, because   Intel   offered   higher   clock   frequencies   than   its   
competitors. However,  Intel's  main  competitor,  AMD,  sold  Athlon  
microprocessors that   executed   programs   faster   than   Intel's   chips   at   the   
same   clock frequency. What is a consumer to do?  
The  only  gimmick- free  way  to  measure  performance  is  by  measuring the 
execution time of a program of interest to you. The computer that executes  your  
program  fastest  has  the  highest  performance.  The  next  best choice  is  to  
measure  the  total  execution  time  of  a  collection  of  programs that  are  similar  
to  those  you  plan  to  run;  this  may  be  necessary  if  you haven't  written  your  
program  yet  or  if  somebody  else  who  doesn't  have your  program  is  making  
the  measurements.  Such  collections  of  programs are called benchmarks, and the 
execution times of these programs are commonly published to give some indication 
of how a processor performs.  
The  execution  time  of  a  program,  measured  in  seconds,  is  given  by Equation 
7.1.  
 
 
 
 
    
The  number  of  instructions  in  a  program  depends  on  the  processor  
architecture.  Some  architectures  have  complicated  instructions  that  do  more 
work  per  instruction,  thus  reducing  the  number  of  instructions  in  a  program. 
However, these complicated instructions are often slower to execute in  hardware.  
The  number  of  instructions  also  depends  enormously  on  the cleverness  of  the  



 

programmer.  For  the  purposes  of  this  chapter,  we  will assume  that  we  are  
executing  known  programs  on  a  MIPS  processor,  so the  number  of  
instructions  for  each  program  is  constant,  independent  of  the 
microarchitecture.  
The  number  of  cycles  per  instruction,  often  called  CPI,  is  the  number  of  
clock  cycles  required  to  execute  an  average  instruction.  It  is  the reciprocal  of  
the  throughput  (instructions  per  cycle,  or  IPC).  Different microarchitectures  
have  different  CPIs.  In  this  chapter,  we  will  assume we   have   an   ideal   
memory   system   that   does   not   affect   the   CPI.   In Chapter 8, we examine how 
the processor sometimes has to wait for the memory, which increases the CPI.  
The  number  of  seconds  per  cycle  is  the  clock  period,  Tc.  The  clock period is 
determined by the critical path through the logic on the processor.  Different  
microarchitectures  have  different  clock  periods.  Logic  and  circuit  designs  also  
significantly  affect  the  clock  period.  For  example,  a carry- lookahead adder is 
faster than a ripple-carry adder. Manufacturing  advances  have  historically  
doubled  transistor  speeds  every  4-6  years,  so a  microprocessor  built  today  will 
 be  much  faster  than  one  from  last decade, even if the microarchitecture and 
logic are unchanged.  
The  challenge  of  the  microarchitect  is  to  choose  the  design  that minimizes the 
execution time while satisfying constraints on cost and/or power  consumption.  
Because  microarchitectural  decisions  affect  both CPI  and  T c  and  are  
influenced  by  logic  and  circuit  designs,  determining the best choice requires 
careful analysis.  
There  are  many  other  factors  that  affect  overall  computer  performance.  For  
example,  the  hard  disk,  the  memory,  the  graphics  system,  and  the  network  
connection  may  be  limiting  factors  that  make  processor  performance  
irrelevant.  The  fastest  microprocessor  in  the  world  doesn't  help  surfing  the  
Internet  on  a  dial-up  connection.  But  these  other  factors  are beyond the scope 
of this book.  

 
2.3  SINGLE-CYCLE PROCESSOR  

We  first  design  a  MIPS  microarchitecture  that  executes  instructions  in  a single 
 cycle.  We  begin  constructing  the  datapath  by  connecting  the  state elements  
from  Figure  7.1  with  combinational  logic  that  can  execute  the various 
instructions. Control signals determine which specific instruction  is  carried  out  by 
 the  datapath  at  any  given  time.  The  controller  contains  combinational  logic  



 

that  generates  the  appropriate  control  signals  based  on the current instruction. 
We conclude by analyzing the performance of  the single-cycle processor.  

 

2.3.1   Single-Cycle Datapath  

 

 
 

 
 

 
This  section  gradually  develops  the  single-cycle  datapath,  adding  one  piece  at  
a  time  to  the  state  elements  from  Figure  7.1.  The  new  connections  are  
emphasized  in  black  (or  blue,  for  new  control  signals),  while the hardware that 
has already been studied is shown in gray.  

 
The   program   counter   (PC)   register   contains   the   address   of   the  instruction  
to  execute.  The  first  step  is  to  read  this  instruction  from  instruction memory. 
Figure 7.2 shows that the PC is simply connected  to the  address  input  of  the  
instruction  memory.  The  instruction  memory reads out, or fetches, the 32-bit 
instruction, labeled Instr.  
 



 

The  processor's  actions  depend  on  the  specific  instruction  that  was fetched.   
First   we   will   work   out   the   datapath   connections   for   the lw instruction.  
Then  we  will  consider  how  to  generalize  the  datapath  to handle the other 
instructions.  
For   a lw   instruction,   the   next   step   is   to   read   the   source   register 
containing  the  base  address.  This  register  is  specified  in  the rs  field  of the   
instruction,   Instr25:21  .   These   bits   of   the   instruction   are   connected to the 
address input of one of the register file read ports, A1, as shown in Figure 7.3. The 
register file reads the register value onto RD1.  
The lw instruction also requires an offset. The offset is stored in the immediate  field 
 of  the  instruction,  Instr15:0 .  Because  the  16-bit  immediate  might  be  either  
positive  or  negative,  it  must  be  sign-extended  to 32   bits,   as   shown   in   
Figure   7.4.   The   32-bit   sign-extended   value   is called  SignImm.  Recall  from  
Section  1.4.6  that  sign  extension  simply copies  the  sign  bit  (most  significant  
bit)  of  a  short  input  into  all  of  the upper   bits   of   the   longer   output.   
Specifically,   SignImm15:0 _ Instr15:0  and SignImm31:16 _ Instr15.  

 
 
 
 

 
 
 
 
 
 
 
 

 



 

 

The  processor  must  add  the  base  address  to  the  offset  to  find  the address  to  
read  from  memory.  Figure  7.5  introduces  an  ALU  to  perform this   addition.   
The   ALU   receives   two   operands,  SrcA   and   SrcB.   SrcA comes  from  the  
register  file,  and  SrcB  comes  from  the  sign-extended immediate.  The  ALU  can  
perform  many  operations,  as  was  described  in Section  5.2.4.  The  3-bit  
ALUControl  signal  specifies  the  operation.  The ALU   generates   a   32-bit   
ALUResult   and   a   Zero   flag,   that   indicates whether  ALUResult __ 0.  For  a lw 

 instruction,  the  ALUControl  signal should  be  set  to  010to  add  the  base  
address  and  offset.  ALUResult  is sent   to   the   data   memory   as   the   address   
for   the   load   instruction,   as shown in Figure 7.5.  
The  data  is  read  from  the  data  memory  onto  the  ReadData  bus, then  written  
back  to  the  destination  register  in  the  register  file  at  the end  of  the  cycle,  as  
shown  in  Figure  7.6.  Port  3  of  the  register  file  is  the write  port.   

 
The  destination  register  for  the lw  instruction  is  specified  in the rt  field,  
Instr20:16  ,  which  is  connected  to  the  port  3  address  input, A3,  of  the  
register  file.   



 

The  ReadData  bus  is  connected  to  the  port  3 write   data   input,   WD3,   of   the 
  register   file.   A   control   signal   called RegWrite  is  connected  to  the  port  3  
write  enable  input,  WE3,  and  is asserted  during  a lw instruction  so  that  the  
data  value  is  written  into  the register  file.  The  write  takes  place  on  the  rising 
 edge  of  the  clock  at  the end of the cycle.  
While    the    instruction    is    being    executed,    the    processor    must compute  
the  address  of  the  next  instruction,  PC_.  Because  instructions are  32  bits _ 4  
bytes,  the  next  instruction  is  at  PC _ 4.  Figure  7.7  uses another adder to 
increment the PC by 4. The new address is written into the program counter on the 
next rising edge of the clock. 

 
 
 
 
 
 
 
 
 
 
 
 
This completes the datapath for the lw instruction. Next,  let  us  extend  the  
datapath  to  also  handle  the sw  instruction. Like the lw instruction, the sw 
instruction reads a base address from port 1  of  the  register  and  sign-extends  an  
immediate.  The  ALU adds  the  base address  to  the  immediate  to  find  the  
memory  address.  All  of  these  functions are already supported by the datapath.  
 
The sw  instruction  also  reads  a  second  register  from  the  register  file and writes 
it to the data memory. Figure 7.8 shows the new connections forthis  function.  The  
register  is  specified  in  the rt  field,  Instr20:16 of  the  instruction  are  connected  
to  the  second  register  file  read  port,  A2.  
The  register  value  is  read  onto  the  RD2  port.  It  is  connected  to  the  write data 
 port  of  the  data  memory.   

 
 

 



 

The  write  enable  port  of  the  data  memory, WE,  is  controlled  by  MemWrite.  
For  a sw  instruction,  MemWrite _ 1,  to write  the  data  to  memory;  ALUControl 
_ 010,  to  add  the  base  address and  offset;  and  RegWrite _ 0,  because  nothing  
should  be  written  to  the register  file. 
 
Note  that  data  is  still  read  from  the  address  given  to  the  data memory, but 
that this ReadData is ignored because RegWrite _ 0.  
Next,  consider  extending  the  datapath  to  handle  the  R- type  instructions add, 
sub, and, or, and slt. All of these instructions read two registers  from  the  register  
file,  perform  some  ALU  operation  on  them,  and write  the  result  back  to  a  
third  register  file.  They  differ  only  in  the  specific ALU operation. Hence, they 
can all be handled with the same hardware, using different ALUControl signals.  
Figure  7.9  shows  the  enhanced  datapath  handling  R- type  instructions.  The  
register  file  reads  two  registers.  The  ALU  performs  an  operation  on  these  two 
 registers.  In  Figure  7.8,  the  ALU  always  received  its SrcB  operand  from  the  
sign-extended  immediate  (SignImm).  Now,  we add  a  multiplexer  to  choose  
SrcB  from  either  the  register  file  RD2  port or SignImm.  

 
The  multiplexer  is  controlled  by  a  new  signal,  ALUSrc.  ALUSrc  is  0 for R- type 
instructions to choose SrcB from the register file; it is 1 for lw and sw  to  choose  
SignImm.  This  principle  of  enhancing  the  datapath's capabilities  by  adding  a  
multiplexer  to  choose  inputs  from  several  possibilities  is  extremely  useful.  
Indeed,  we  will  apply  it  twice  more  to  complete the handling of R- type 
instructions.  

 



 

In   Figure   7.8,   the   register   file   always   got   its   write   data   from the  data  
memory.  However,  R- type  instructions  write  the  ALUResult  to the   register   file.   
Therefore,   we   add   another   multiplexer   to   choose between ReadData and 
ALUResult. We call its output Result. This multiplexer  is  controlled  by  another  
new  signal,  MemtoReg.  MemtoReg  is  0 for  R- type  instructions  to  choose  Result  
from  the  ALUResult;  it  is  1  for lw to  choose  ReadData.  We  don't  care  about  
the  value  of  MemtoReg  for sw, because sw does not write to the register file.  
Similarly,  in  Figure  7.8,  the  register  to  write  was  specified  by  the rt field  of  
the  instruction,  Instr20:16 . .  However,  for  R- type  instructions,  the register  is  
specified  by  the rd field,  Instr15:11 . .  Thus,  we  add  a  third  multiplexer  to  
choose  WriteReg  from  the  appropriate  field  of  the  instruction.  
 
 The  multiplexer  is  controlled  by  RegDst.  RegDst  is  1  for  R- type instructions  to  
choose  WriteReg  from  the rd  field,  Instr15:11  ;  it  is  0  for lw  to  choose  the rt  
field,  Instr20:16 .  We  don't  care  about  the  value  of RegDst for sw, because sw 
does not write to the register file.  
Finally,  let  us  extend  the  datapath  to  handle beq.  beq  compares two  registers.  
If  they  are  equal,  it  takes  the  branch  by  adding  the  branch offset to the 
program counter. 
 
 

 
 
 
 



 

Recall that the offset is a positive or negative number, stored in the imm field of the 
instruction, Instr31:26  .The offset   indicates   the   number   of   instructions   to   
branch   past.   Hence,   the immediate  must  be  sign-extended  and  multiplied  by  
4  to  get  the  new program counter value: 
 PC_ _ PC _ 4 _ SignImm _ 4.Figure  7.10  shows  the  datapath  modifications.  The  
next  PC  value for  a  taken  branch,  PCBranch,  is  computed  by  shifting  SignImm 
 left  by 2  bits,  then  adding  it  to  PCPlus4.  The  left  shift  by  2  is  an  easy  way  
to multiply  by  4,  because  a  shift  by  a  constant  amount  involves  just  wires. 
The  two  registers  are  compared  by  computing  SrcA _ SrcB  using  the ALU. If 
ALUResult is 0, as indicated by the Zero flag from the ALU, the registers  are  equal.  
We  add  a  multiplexer  to  choose  PC_  from  either PCPlus4   or   PCBranch.   
PCBranch   is   selected   if   the   instruction   is a  branch  and  the  Zero  flag  is  
asserted.  Hence,  Branch  is  1  for beq  and 0   for   other   instructions. 
For beq,   ALUControl _ 110,   so   the   ALU performs  a  subtraction.  ALUSrc _ 0  to 
 choose  SrcB  from  the  register file.  RegWrite  and  MemWrite  are  0,  because  a  
branch  does  not  write  to the  register  file  or  memory.  We  don't  care  about  the 
 values  of  RegDst and MemtoReg, because the register file is not written.  
This  completes  the  design  of  the  single-cycle  MIPS  processor  datapath.  We  
have  illustrated  not  only  the  design  itself,  but  also  the  design process  in  
which  the  state  elements  are  identified  and  the  combinational logic  connecting 

 the  state  elements  is  systematically  added.  In  the  next section,  we  consider  
how  to  compute  the  control  signals  that  direct  the operation of our datapath. 



 

2.3.2   Single-Cycle Control  

The  control  unit  computes  the  control  signals  based  on  the opcode  and funct 
fields  of  the  instruction,  Instr31:26  and  Instr5:0 .  Figure  7.11  shows the  entire 
 single-cycle  MIPS  processor  with  the  control  unit  attached  to the datapath.  

Most of the control information comes from the opcode, but R- type instructions  also 
 use  the funct  field  to  determine  the  ALU  operation. Thus,  we  will  simplify  our 
 design  by  factoring  the  control  unit  into  two blocks   of   combinational   logic,  
 as   shown   in   Figure   7.12The   main decoder  computes  most  of  the  outputs  
from  the opcode.  It  also  determines  a  2-bit  ALUOp  signal.  
 The  ALU  decoder  uses  this  ALUOp  signal in conjunction with the funct field to 
compute ALUControl. The meaning of the ALUOp signal is given in Table 7.1.   
 
 

 
 
 
 
 
 

 

 

 

 

 
 
 



 

 

 



 

Table  7.2  is  a  truth  table  for  the  ALU  decoder.  Recall  that  the  meanings  of  
the  three  ALUControl  signals  were  given  in  Table  5.1.  Because ALUOp  is  
never  11,  the  truth  table  can  use  don't  care's  X1  and  1X instead  of  01  and  
10  to  simplify  the  logic.  When  ALUOp  is  00  or  01,  the ALU   should   add   or  
 subtract,   respectively.   When   ALUOp   is   10,   the decoder  examines  the funct  
field  to  determine  the  ALUControl.  Note that,  for  the  R- type  instructions  we  
implement,  the  first  two  bits  of  the funct field are always 10, so we may ignore 
them to simplify the decoder.  
The  control  signals  for  each  instruction  were  described  as  we  built the  
datapath.  Table  7.3  is  a  truth  table  for  the  main  decoder  that  summarizes   
the   control   signals   as   a   function   of   the   opcode.   All   R- type instructions  
use  the  same  main  decoder  values;  they  differ  only  in  the ALU  decoder  
output.  Recall  that,  for  instructions  that  do  not  write  to the  register  file  (e.g., 
sw  and beq),  the  RegDst  and  MemtoReg  control signals  are  don't  cares  (X);  the 
 address  and  data  to  the  register  write port  do  not  matter  because  RegWrite  is 
 not  asserted.  The  logic  for  the decoder  can  be  designed  using  your  favorite  
techniques  for  combinational logic design.  

 

Example SINGLE-CYCLE PROCESSOR OPERATION  
 
Determine the values of the control signals and the portions of the datapath that are 
used when executing an or instruction.  

 
Solution:   Figure  7.13  illustrates  the  control  signals  and  flow  of  data  during 
execution  of  the or  instruction.  The  PC  points  to  the  memory  location  holding 
the instruction, and the instruction memory fetches this instruction.  

 
 

The  main  flow  of  data  through  the  register  file  and  ALU  is  represented  with  
a dashed  blue  line.  The  register  file  reads  the  two  source  operands  specified  
by Instr25:21  and  Instr20:16 .  SrcB  should  come  from  the  second  port  of  the  
register file (not SignImm), so ALUSrc must be 0. or is an R- type instruction, so 
ALUOp is  10,  indicating  that  ALUControl  should  be  determined  from  the funct 
 field to be 001. Result is taken from the ALU, so MemtoReg is 0. The result is written 
to  the  register  file,  so  RegWrite  is  1.  The  instruction  does  not  write  memory,  
so MemWrite _ 0.The   selection   of   the   destination   register   is   also   shown   
with   a   dashed   blue line. The destination register is specified in the rd field, 
Instr15:11  , so RegDst 1.  



 

The  updating  of  the  PC  is  shown  with  the  dashed  gray  line.  The  instruction  
is not  a  branch,  so  Branch _ 0  and,  hence,  PCSrc  is  also  0.  The  PC  gets  its  
next value from PCPlus4.  
Note  that  data  certainly  does  flow  through  the  nonhighlighted  paths,  but  that  

 
 
 

 
 
 
the  value  of  that  data  is  unimportant  for  this  instruction.  For  example,  the 
immediate  is  sign-extended  and  data  is  read  from  memory,  but  these  values  
do not influence the next state of the system.  
 
 

 

 

 



 

2.3.3   More Instructions  

We  have  considered  a  limited  subset  of  the  full  MIPS  instruction  set. Adding  
support  for  the addi  and j  instructions  illustrates  the  principle of  how  to  
handle  new  instructions  and  also  gives  us  a  sufficiently  rich instruction  set  to 
 write  many  interesting  programs.  We  will  see  that supporting   some   
instructions   simply   requires   enhancing   the   main decoder,  whereas  
supporting  others  also  requires  more  hardware  in  the datapath.  

 
Example addi INSTRUCTION  

 
The add immediate instruction, addi, adds the value in a register to the immediate  
and  writes  the  result  to  another  register.  The  datapath  already  is  capable  of 
this task. Determine the necessary changes to the controller to support addi.  

 
Solution:  All  we  need  to  do  is  add  a  new  row  to  the  main  decoder  truth  
table showing  the  control  signal  values  for addi,  as  given  in  Table  7.4.  The  
result should be written to the register file, so RegWrite _ 1. The destination register 
is specified  in  the rt  field  of  the  instruction,  so  RegDst _ 0.  SrcB  comes  from  
the immediate,  so  ALUSrc _ 1.  The  instruction  is  not  a  branch,  nor  does  it  
write memory,  so  Branch _ MemWrite _ 0.  The  result  comes  from  the  ALU,  not 
memory, so MemtoReg _ 0. Finally, the ALU should add, so ALUOp _ 00.  

 
 
 
 
 
 
 
 



 

Example j INSTRUCTION 
 
The  jump  instruction, j,  writes  a  new  value  into  the  PC.  The  two  least  
significant  bits  of  the  PC  are  always  0,  because  the  PC  is  word  aligned  (i.e.,  
always  a multiple  of  4).  The  next  26  bits  are  taken  from  the  jump  address  
field  in Instr25:0 . The upper four bits are taken from the old value of the PC. The 
existing datapath lacks hardware to compute PC_ in this fashion. Determine the 
necessary changes to both the datapath and controller to handle j.  
Solution: First, we must add hardware to compute the next PC value, PC_, in the case 
 of  a j  instruction  and  a  multiplexer  to  select  this  next  PC,  as  shown  in Figure 
7.14. The new multiplexer uses the new Jump control signal.  
Now  we  must  add  a  row  to  the  main  decoder  truth  table  for  the j  instruction 
and  a  column  for  the  Jump  signal,  as  shown  in  Table  7.5.  The  Jump  control 
signal is 1 for the j instruction and 0 for all others. j does not write the register file  
or  memory,  so  RegWrite _ MemWrite _ 0.  Hence,  we  don't  care  about the   
computation   done   in   the   datapath,   and   RegDst _ ALUSrc _ Branch _ 
MemtoReg _ ALUOp _ X.  

 
 
 



 

2.3.4   Performance Analysis  
Each instruction in the single-cycle processor takes one clock cycle, so the CPI  is  1. 
 The  critical  path  for  the lw  instruction  is  shown  in  Figure  7.15 with a heavy 
dashed blue line. It starts with the PC loading a new address on  the  rising  edge  of  
the  clock.  The  instruction  memory  reads  the  next instruction.  The  register  file  
reads  SrcA.  While  the  register  file  is  reading, the  immediate  field  is  sign-
extended  and  selected  at  the  ALUSrc  multiplexer to determine SrcB. The ALU 
adds SrcA and SrcB to find the effective  address.  The  data  memory  reads  from  
this  address.  The  MemtoReg multiplexer selects ReadData. Finally, Result must 
setup at the register file before the next rising clock edge, so that it can be properly 
written. Hence, the cycle time is  

 

 

 
 

 
 

 
 
 
 



 

In most implementation technologies, the ALU, memory, and register file accesses  
are  substantially  slower  than  other  operations.  Therefore,  the cycle time 
simplifies to  

 
The numerical values of these times will depend on the specific implementation 
technology.  

 
Other  instructions  have  shorter  critical  paths.  For  example,  R- type instructions  
 do   not   need   to   access   data   memory.   However,   we   are disciplining  
ourselves  to  synchronous  sequential  design,  so  the  clock period   is   constant   
and   must   be   long   enough   to   accommodate   the slowest instruction.  

 
Example  SINGLE-CYCLE PROCESSOR PERFORMANCE  
Ben Bitdiddle is contemplating building the single-cycle MIPS processor in a 65 nm 
CMOS manufacturing process. He has determined that the logic elements have the  
delays  given  in  Table  7.6.  Help  him  compare  the  execution  time  for  a  
program with 100 billion instructions.  

 
Solution: According to Equation 7.3, the cycle time of the single-cycle processor is 
Tc1 _ 30 _ 2(250) _ 150 _ 2(25) _ 200 _ 20 _ 950 ps.  We  use  the  subscript "1"  to 
 distinguish  it  from  subsequent  processor  designs.  According  to  Equation 7.1, 
the total execution time is T  1 _ (100 _ 10  9 instructions)(1 cycle/instruction)  

 
 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

CHAPTER TRHEE 

CODING 

 

-- Adder  
library ieee;  

use ieee.std_logic_1164.all ;  

use ieee.std_logic_arith.all;  

 

entity adder is  

  port(a: in unsigned(31 downto 0);  

       b: in unsigned(31 downto 0);  

       c: out unsigned(31 downto 0));  

 end adder;  

 

 architecture arc_adder of adder is  

 begin  

 

   c<=a + b;  

 

 end arc_adder;  

 

 

 

-- right _shift  
library ieee;  

use ieee.std_logic_1164.all;  

 

entity r_shift is  

  port(a : in std_logic_vector(31 downto 0);  

       sel : in integer range 0 to 31;  

       c : out std_logic_vector(31 downto 0));  

end r_shift;  

 

architecture arc_r_shift of r_shift is  

sub type vector is std_logic_vector(31 downto 0);  

type matrix is array(31 downto 0) of vector;  

signal row : matrix;  

begin  

  row(0)<=a;  

  g_1 : for i in 1 to 31 generate  

          row(i)<='0' & row(i - 1)(31 downto 1);  

        end generate;  

        c<=row(sel);  

end arc_r_shift;  
 

 

 

- - arithmatic _r ight_shift  
library ieee;  

use ieee.std_logic_1164.all;  

 

entity a_r_shift is  

  port(a : in std_logic_vector(31 downto 0);  

       sel : in integer range 0 to 31;  



 

       c : out std_logic_vector(31 downto 0));  

end a_r_shift;  

 

architecture arc_a_r_shift of a_r_shift is  

subtype vector is std_logic_vector(31 downto 0);  

type matrix is array(31 downto 0) of vector;  

signal row : matrix;  

signal s_1 : std_logic;  

begin  

  row(0)<=a;  

  g_1 : for i in 1 to 31 generate  

          row(i)<=a(31 ) & row(i - 1)(31 downto 1);  

        end generate;  

 

        c<=row(sel);  

 

end arc_a_r_shift;  

 

 

 

-- arithmatic_left_shift  
library ieee;  

use ieee.std_logic_1164.all;  

 

entity l_shift is  

  port(a : in std_logic_vector(31 downto 0);  

       sel : in integer range 0  to 31;  

       c : out std_logic_vector(31 downto 0));  

end l_shift;  

 

architecture arc_l_shift of l_shift is  

subtype vector is std_logic_vector(31 downto 0);  

type matrix is array(31 downto 0) of vector;  

signal row : matrix;  

begin  

  row(0)<=a;  

  g_1 : for i in 1 to 31 generate  

          row(i)<=row(i - 1)(30 downto 0) & '0';  

        end generate;  

 

        c<=row(sel);  

end arc_l_shift;  

 

 

 

 

-- arithmatic_ shift  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

use ieee.std_logic_unsigned.all;  

 

entity arith_sh is  

  port(a_1: in unsigned(31 downto 0);  

       b_1: in unsigned(31 downto 0);  

       sel: in unsigned(2 downto 0);  

       c: out unsigned(31 downto 0);  

       negative: out std_logic;  

       zero: out std_logic;  

       over_flow: out std _logic;  



 

       carry:out std_logic;  

       borrow: out std_logic);  

end arith_sh;  

 

architecture arc_arith_sh of arith_sh is  

signal s_1,s_2,s_3,s_4,a,b : std_logic_vector(31 downto 0);  

signal sel_sh: integer range 0 to 31;  

begin  

  a<=conv_std_logic_vector(a_ 1,32);  

  b<=conv_std_logic_vector(b_1,32);  

  sel_sh<=conv_integer(b_1(4 downto 0));  

 

  u1: entity work.l_shift(arc_l_shift) port 

map(a=>a,sel=>sel_sh,c=>s_2);  

  u2: entity work.r_shift(arc_r_shift) port 

map(a=>a,sel=>sel_sh,c=>s_3);  

  u3: entity work.a_r_s hift(arc_a_r_shift) port 

map(a=>a,sel=>sel_sh,c=>s_4);  

 

 

  with sel select  

  s_1<=a+b when "000",  

     a+((not b)+1) when "001",  

     s_2 when "010",  

     s_3 when "011",  

     s_4 when "100",  

     (others=>'0') when others;  

 

  zero<='1' when s_1=conv_std_l ogic_vector(0,32) else  

        '0';  

 

negative<=s_1(31);  

 

over_flow<=(((not a(31)) and (not b(31)) and s_1(31)) or (a(31) and 

b(31) and (not s_1(31))))  

or (((not a(31)) and b(31) and s_1(31)) or (a(31) and (not b(31)) and 

(not s_1(31)))); --  with overflow e nable  

 

carry<=((not a(31)) and (not b(31)) and s_1(31)) or (a(31) and b(31) 

and (not s_1(31)));          --  with add enable  

 

borrow<=((not a(31)) and (not b(31)) and s_1(31)) or (a(31) and (not 

b(31)) and s_1(31));         --  with sub enable  

 

c<=unsigned(s _1);  

 

end arc_arith_sh;  

 

 

 

-- logic  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

use ieee.std_logic_unsigned.all;  

 

entity logic is  

      port(a_1 : in unsigned(31 downto 0);  

           b_1 : in unsigned(31 downto 0);  

           sel : in unsigned(2 downto 0);  

           c : out unsigned(31 downto 0));            



 

end logic;  

 

architecture arc_logic of logic is  

signal a,b,s_1 : std_logic_vector(31 downto 0);  

begin  

 

  a<=conv_std_logic_vector(a_1,32);  

  b<=conv_std_logic_vector(b_1,32) ;  

 

with sel select  

     s_1<= a and b when "000",  

           a or b when "001",  

           a xor b when "010",  

           a nand b when "011",  

           a nor b when "100",  

           a xnor b when "101",  

           (others=>'0') when others;  

 

          c<=unsigned(s_1);  

end arc_logic;  

 

 

 

-- ALU 

library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

 

entity alu is  

  port(a: unsigned(31 downto 0);  

       b: unsigned(31 downto 0);  

       sel: in unsigned(3 downto 0);  

       c: out unsigned(3 1 downto 0);  

       negative: out std_logic;  

       zero: out std_logic;  

       over_flow: out std_logic;  

       carry:out std_logic;  

       borrow: out std_logic);  

  end alu;  

 

architecture arc_alu of alu is  

signal s_1,s_2:unsigned(31 downto 0);  

begin  

 

  u1: entity work.arith_sh(arc_arith_sh) port map( a_1=>a,b_1=>b,sel=>  

sel(2 downto 

0),c=>s_1,negative=>negative,zero=>zero,over_flow=>over_flow,carry=>c

arry,  

borrow=>borrow);  

 

  u2: entity work.logic(arc_logic) port map(a_1=>a,b_1=>b,sel=>sel(2 

downto 0),c=>s _2);  

 

  with sel(3) select  

   c<=s_1 when '0',  

      s_2 when others;  

 

end arc_alu;  

 

 

 



 

-- instruction memory  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

 

entity rom is  

port (instr_addr : in unsigned(7 downto 0);  

instr_out : out unsigned(31 downto 0)  

);  

end rom;  

 

architecture arc_rom of rom is  

type mem_type is array(0 to 255) of unsigned(7 downto 0);  

signal mem : mem_type;  

signal s_1,s_2,s_3: unsigned(7 downto 0);  

begin  

---------------------- Program -------------------------------- ---  

 

mem(3)<=x"82";mem(2)<=x"00";mem(1)<=x"20";mem(0)<=x"05";           --

ADD      simm=5  

mem(7)<=x"84";mem(6)<=x"20";mem(5)<=x"20";mem(4)<=x"05";           --

SUB      simm= - 5 

mem(11)<=x"86";mem(10)<=x"80";mem(9)<=x"40";mem(8)<=x"02";         --

ADDCC     

mem(15)<=x"02";mem(14)<=x"80";mem(13)<=x"00";mem(12)<=x"04";       --

BE  to  28  

mem(19)<=x"06";mem(18)<=x"00";mem(17)<=x"40";mem(16)<=x"02";       --

add  

mem(23)<=x"08";mem(22)<=x"00";mem(21)<=x"40";mem(20)<=x"02";       --

sub  

mem(27)<=x"00";mem(26)<=x"00"; mem(25)<=x"00";mem(24)<=x"02";       --

branch  

mem(31)<=x"92";mem(30)<=x"00";mem(29)<=x"20";mem(28)<=x"f1";       --

ADD      28  

mem(35)<=x"81";mem(34)<=x"e0";mem(33)<=x"20";mem(32)<=x"01";       --

SAVE 

mem(39)<=x"f2";mem(38)<=x"a0";mem(37)<=x"00";mem(36)<=x "01";       --

STA 

mem(43)<=x"40";mem(42)<=x"00";mem(41)<=x"00";mem(40)<=x"09";       --

CALL  36  

mem(47)<=x"40";mem(46)<=x"00";mem(45)<=x"00";mem(44)<=x"09";       --  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

--------------- interrupt routine --------------------------------  

 

mem(51)<=x"cc";mem(50)<= x"80";mem(49)<= x"00";mem(48)<= x"00";    --

LDA   rd=6  

mem(55)<=x"b2";mem(54)<= x"26";mem(53)<= x"60";mem(52)<= x"01";    --

SUB   i=1  rd,rs=25   simm=1    

mem(59)<=x"cc";mem(58)<= x"a0";mem(57)<= x"00";mem(56)<= x"01";    --

STA    

mem(63)<=x"8e";mem(62)<= x"00";mem(61)<= x"20";mem(60)<= x"0f";    --

ADD i=1   rd=7   simm=15  

mem(67)<=x"8e";mem(66)<= x"a1";mem(65)<= x"e0";mem(64)<= x"01";    --

SUBCC i=1   rs=7  rd=7  

mem(71)<=x"12";mem(70)<= x"bf";mem(69)<= x"ff";mem(68)<= x"ff";    --

BNE to 60  

mem(75)<=x"8c";mem(74)<= x"a1";mem(73)<= x"a0";mem(72)<= x"01";    --

subCC i=1   rs=6  rd=6  

mem(79)<=x"02";mem(78)<= x"bf";mem(77)<= x"ff";mem(76)<= x"f6";    --

BE to 36  

mem(83)<=x"40";mem(82)<= x"00";mem(81)<= x"00";mem(80)<= x"0e";    --

CALL 

 

----- -----------------------------------------------------------  

 

   s_1<=instr_addr+1;  

   s_2<=instr_addr+2;  

   s_3<=instr_addr+3;  

 

instr_out(7 downto 0) <= mem(conv_integer(instr_addr)); --  read  

instr_out(15 downto 8) <= mem(conv_integer(s_1)); --  read  

instr_ out(23 downto 16) <= mem(conv_integer(s_2)); --  read  

instr_out(31 downto 24) <= mem(conv_integer(s_3)); --  read  

 

end arc_rom;  
 

 

 

-- prog counter  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

 

entity prog_count is  

  port(clk: in st d_logic;  

       reset:in std_logic;  

       en_pc:in std_logic;  

       pc_in: in unsigned(31 downto 0);  

       pc_out: out unsigned(31 downto 0));  

 end prog_count;  

 

 architecture arc_prog_count of prog_count is  

 begin  

 

   process(clk)  

     begin  

     if(en_ pc='1') then   

      if(reset='1') then  

         pc_out<=x"00000000";  

      elsif(clk'event and clk='1') then  

         pc_out<=pc_in;  

      end if;  

     end if;  



 

   end process;  

 

 end arc_prog_count;  

 

 

-- shift extend  
library ieee;  

use ieee.std_logic_1164.al l;  

use ieee.std_logic_arith.all;  

 

entity shift_extend is  

  port(a: in unsigned(21 downto 0);  

       c: out unsigned(31 downto 0));  

end shift_extend;  

 

architecture arc_shift_extend of shift_extend is  

begin  

 

  c<=("11111111"&a&"00") when a(21)='1' else  

     ("00000000"&a&"00");  

end arc_shift_extend;  

 

 

 

 

-- sign extend  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

 

entity sign_extend is  

  port(a: in unsigned(12 downto 0);  

       c: out unsigned(31 downto 0));  

end sign_extend;  

 

archite cture arc_sign_extend of sign_extend is  

begin  

 

  c<=("1111111111111111111"&a) when a(12)='1' else  

     ("0000000000000000000"&a);  

 

end arc_sign_extend;  

 

 

 

-- zero extend  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

 

entity zero_e xtend  is  

  port(a: in unsigned(4 downto 0);  

       c: out unsigned(31 downto 0));  

end zero_extend ;  

 

architecture arc_ zero_extend  of zero_extend  is  

begin  

  c<=conv_unsigned(0,27)&a;  

end zero_extend ;  

 



 

 

 

-- mux 2X1  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

 

entity mux_2 is  

  port(a: in unsigned(31 downto 0);  

       b: in unsigned(31 downto 0);  

       sel: in std_logic;  

       c: out unsigned(31 downto 0));  

end mux_2;  

 

architecture arc_mux_2 of mux_2 is  

begin  

 

  c<=a when sel='0' else  

     b;  

 

end arc_mux_2;  

 

 

 

-- mux 4X1  
library ieee;  

use ieee.std_logic_arith.all;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_unsigned.all;  

 

entity mux_4 is  

  port(a: in unsigned(31 downto 0);  

       b: in unsigned(31 downto 0);  

       d: in unsign ed(31 downto 0);  

       e: in unsigned(31 downto 0);  

       sel: in unsigned(1 downto 0);  

       c: out unsigned(31 downto 0));  

end mux_4;  

 

architecture arc_mux_4 of mux_4 is  

signal sel_int: integer range 0 to 3;  

begin  

  sel_int<=conv_integer(sel);  

  c<=a when sel_int=0 else  

     b when sel_int=1 else  

     d when sel_int=2 else  

     e;  

 

end arc_mux_4;  

 

 

 

 

 

 

 

 



 

-- mux 8X1  
library ieee;  

use ieee.std_logic_arith.all;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_unsigned.all;  

 

entity mux_8 is  

  port(a: in unsigned(31 downto 0);  

       b: in unsigned(31 downto 0);  

       d: in unsigned(31 downto 0);  

       e: in unsigned(31 downto 0);  

       f: in unsigned(31 downto 0);  

       g: in unsigned(31 downto 0);  

       h: in unsigned(31 downto 0);  

       k: in unsi gned(31 downto 0);  

       sel: in unsigned(2 downto 0);  

       c: out unsigned(31 downto 0));  

end mux_8;  

 

architecture arc_mux_8 of mux_8 is  

signal sel_int: integer range 0 to 7;  

begin  

  sel_int<=conv_integer(sel);  

  c<=a when sel_int=0 else  

     b when se l_int=1 else  

     d when sel_int=2 else  

     e when sel_int=3 else  

     f when sel_int=4 else  

     g when sel_int=5 else  

     h when sel_int=6 else  

     k;     

 

end arc_mux_8;  

 

 

 

-- adder_4  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith .all;  

 

entity add_4 is  

  port(add_in: in unsigned(31 downto 0);  

       add_out: out unsigned(31 downto 0));  

 end add_4;  

 

 architecture arc_add_4 of add_4 is  

 begin  

 

   add_out<=add_in + 4;  

 

 end arc_add_4;  

 

 

 

 

 

 



 

-- reg_8  
library ieee;  

use ieee.std_logic_ 1164.all;  

use ieee.std_logic_arith.all;  

use ieee.std_logic_unsigned.all;  

 

entity reg_8 is  

  port(clk: in std_logic;  

       add_1: in unsigned(4 downto 0);  

       add_2: in unsigned(4 downto 0);  

       add_3: in unsigned(4 downto 0);  

       data_in: in unsi gned(31 downto 0);  

       write_en: in std_logic;  

       data_1: out unsigned(31 downto 0);  

       data_2: out unsigned(31 downto 0);  

       data_3: out unsigned(31 downto 0));  

 

end reg_8;  

 

architecture arc_reg_8 of reg_8 is  

subtype vector is unsigned(31 d ownto 0);  

type matrix is array(0 to 7) of vector;  

signal reg: matrix :=(others=>(others=>'0'));  

signal add_11: unsigned(2 downto 0);  

signal add_22: unsigned(2 downto 0);  

signal add_33: unsigned(2 downto 0);  

signal s_1,s_2: std_logic;  

signal s_3: integer ra nge 0 to 7;  

begin  

 

  add_11<=add_1(2 downto 0);  

  add_22<=add_2(2 downto 0);  

  add_33<=add_3(2 downto 0);  

 

  s_1<= not(add_3(4) or add_3(3));  

  s_2<=s_1 and write_en;  

  s_3<=conv_integer(add_33);  

 

 

  data_1<=reg(conv_integer(add_11));  

  data_2<=reg(conv_in teger(add_22));  

  data_3<=reg(conv_integer(add_33));  

 

  process(clk,s_2)  

    begin  

      if(clk'event and clk='1') then  

        if(s_2='1') then  

          if(s_3=0) then  

            reg(s_3)<=x"00000000";  

          else reg(s_3)<=data_in;  

          end if;  

        end if;  

      end if;  

  end process;   

 

end arc_reg_8;  

 

 

 

 



 

-- reg_32  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

use ieee.std_logic_unsigned.all;  

 

entity reg_32 is  

  port(clk: in std_logic;  

       add_1: in unsigned( 4 downto 0);  

       add_2: in unsigned(4 downto 0);  

       add_3: in unsigned(4 downto 0);  

       data_in: in unsigned(31 downto 0);  

       write_en: in std_logic;  

       current_window: in std_logic;  

       data_1: out unsigned(31 downto 0);  

       data_2 : out unsigned(31 downto 0);  

       data_3: out unsigned(31 downto 0));  

 

end reg_32;  

 

architecture arc_reg_32 of reg_32 is  

subtype vector is unsigned(31 downto 0);  

type matrix is array(0 to 31) of vector;  

signal reg: matrix :=(others=>(others=>'0'));  

signa l add_11,add_12: unsigned(4 downto 0);  

signal add_21,add_22: unsigned(4 downto 0);  

signal add_31,add_32: unsigned(4 downto 0);  

signal s_1,s_2: std_logic;  

signal s_3: integer range 0 to 31;  

begin  

 

  s_1<=add_3(4) or add_3(3);  

  s_2<=s_1 and write_en;  

  s_3< =conv_integer(add_32);  

 

  add_11<=add_1 -  8;  

  add_12<=add_11 when current_window='1' else  

          add_11 + 16;  

 

  add_21<=add_2 -  8;  

  add_22<=add_21 when current_window='1' else  

          add_21 + 16;  

 

  add_31<=add_3 -  8;  

  add_32<=add_31 when current _window='1' else  

          add_31 + 16;  

 

 

  data_1<=reg(conv_integer(add_12));  

  data_2<=reg(conv_integer(add_22));  

  data_3<=reg(conv_integer(add_32));  

 

  process(clk,s_2)  

    begin  

      if(clk'event and clk='1') then  

        if(s_2='1') then  

          r eg(s_3)<=data_in;  

        end if;  

      end if;  

  end process;   

end arc_reg_32;  



 

-- register file  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

use ieee.std_logic_unsigned.all;  

 

entity register_file  is  

  port(clk: in std_logic;  

       addr_1: in unsigned(4 downto 0);  

       addr_2: in unsigned(4 downto 0);  

       addr_3: in unsigned(4 downto 0);  

       data_in: in unsigned(31 downto 0);  

       write_en: in std_logic;  

       current_window: in std_logic;  

       data_1: out unsign ed(31 downto 0);  

       data_2: out unsigned(31 downto 0);  

       data_3: out unsigned(31 downto 0));  

 

end register_file ;  

 

architecture arc_ register_file  of register_file  is  

signal s_1,s_2,s_3: unsigned(31 downto 0);  

signal s_4,s_5,s_6: unsigned(31 downto 0);  

signal s_7,s_8,s_9: std_logic;  

begin  

 

  u1: entity work.reg_32(arc_reg_32) port 

map(clk=>clk,add_1=>addr_1,add_2=>addr_2,add_3=>addr_3,data_in=>data_

in,    

write_en=>write_en,current_window=>current_window,data_1=>s_1,data_2=

>s_2,data_3=>s_3);  

 

  u2: e ntity work.reg_8(arc_reg_8) port 

map(clk=>clk,add_1=>addr_1,add_2=>addr_2,add_3=>addr_3,data_in=>data_

in,  

write_en=>write_en,data_1=>s_4,data_2=>s_5,data_3=>s_6);  

 

  s_7<=addr_1(4) or addr_1(3);  

  s_8<=addr_2(4) or addr_2(3);  

  s_9<=addr_3(4) or addr_3(3);  

 

  data_1<=s_1 when s_7='1' else  

          s_4 when s_7='0';  

 

  data_2<=s_2 when s_8='1' else  

          s_5 when s_8='0';  

 

  data_3<=s_3 when s_9='1' else  

          s_6 when s_9='0';  

 

end arc_ register_file ;  

 

 

 

 

 

 

 



 

-- status register  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

use ieee.std_logic_unsigned.all;  

 

entity status_register is  

  port(clk: in std_logic;  

       reset: in std_logic;  

       en_icc: in std_logic;  

       negative: in std_logic;  

       zero: in std_logic;  

       over_flow: in std_logic;  

       carry:in std_logic;  

       borrow: in std_logic;  

       addr_1: in unsigned(1 downto 0);  

       data_in: in unsigned(31 downto 0);  

       write_en: in std_logic;  

       trap_type: in unsigned(7 downto 0);  

       data_ out,trap_register,window_invalid: out unsigned(31 downto 

0);  

       current_window: out std_logic;  

       flags: out unsigned(3 downto 0));  

 

end status_register;  

 

architecture arc_status_register of status_register is  

subtype vector is unsigned(31 downto 0 );  

type matrix is array(0 to 3) of vector;  

signal reg: matrix :=(others=>(others=>'0'));  

begin  

 

  data_out<=reg(conv_integer(addr_1));  

  window_invalid<=reg(1);  

  trap_register<=reg(2);  

  current_window<=reg(0)(0);  

  flags(3 downto 0)<=reg(0)(23 downto 20 );  

 

  

process(clk,reset,negative,zero,over_flow,carry,borrow,trap_type,data

_in,en_icc)  

    begin  

 

     if(clk'event and clk='1') then  

      if(reset='1') then  

        reg(0)<=x"00000001";  

        reg(1)(1 downto 0)<="11";  

        reg(1)(31 downto 2)<=x"000 0000"&"00";  

        reg(2)(3 downto 0)<=x"0";  

        reg(2)(31 downto 12)<=x"00000";  

      else  

         if(write_en='1') then  

            case addr_1 is  

         when "00"=>  

          reg(0)(13 downto 0)<=data_in(13 downto 0);  

          reg(0)(19 downto 14)<="000000";  

          reg(0)(31 downto 24)<=x"3a";  

 

         when "01"=>  

          reg(1)(1 downto 0)<="11";  

          reg(1)(31 downto 2)<=x"0000000"&"00";   



 

 

         when "10"=>  

          reg(2)(3 downto 0)<="0000";  

          reg(2)(31 downto 12)<=x" 00000";  

 

         when "11"=>  

          reg(3)<=data_in;  

 

         when others=>null;  

         end case;  

            end if;           

         end if;  

            end if;  

 

             if(en_icc='1')then  

                 reg(0)(20)<=(carry or borrow);  

              reg(0)(21)<=over_flow ;  

              reg(0)(22)<=zero ;  

              reg(0)(23)<=negative ;  

          end if;  

         reg(2)(11 downto 4)<=trap_type;  

 

 

  end process;  

 

end arc_status_register;  

 

 

 

-- window trap  
library ieee;  

use ieee.std_logic _1164.all;  

use ieee.std_logic_arith.all;  

 

entity window_trap is  

  port(a: in unsigned(4 downto 0);  

       b: in unsigned(31 downto 0);  

       en_trap: out std_logic);  

  end window_trap;  

 

architecture arc_window_trap of window_trap is  

 

begin  

 

    en_trap<=n ot b(conv_integer(a));  

 

end arc_window_trap;  

 

 

 

 

 

 

 

 

 

 

 

 



 

----- -- ======CACHE========-----  

-- set0  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

 

entity set0 is  

  port(clk: in std_logic;  

       address: in unsigned(31 downto  0);  

       data_in: in unsigned(31 downto 0);  

       write_en: in std_logic;  

       valid: in std_logic;  

       darity: in std_logic;  

       data_out: out unsigned(31 downto 0);  

       hit: out std_logic;  

       least: out std_logic;  

       d_0,d_1: out s td_logic;  

       tag0: out unsigned(24 downto 0);  

       tag1: out unsigned(24 downto 0));  

end set0;  

 

architecture arc_set0 of set0 is  

type mem_type is array(0 to 3) of unsigned(31 downto 0);  

signal block_0 : mem_type;  

signal block_1 : mem_type;  

signal tag _0 : unsigned(24 downto 0);  

signal tag_1 : unsigned(24 downto 0);  

signal address_tag: unsigned(24 downto 0);  

signal equal_0,equal_1,hit_0,hit_1,s,least_disabled: std_logic:='0';  

signal valid_0,valid_1,least_used: std_logic:='0';  

signal data_0,data_1: unsig ned(31 downto 0);  

signal block_offset: unsigned(1 downto 0);  

signal set_sel: unsigned(2 downto 0);  

 

begin  

 

  address_tag<=address(31 downto 7);  

  block_offset<=address(3 downto 2);  

  set_sel<=address(6 downto 4);  

 

  s<= (not (set_sel(0))) and  (not (set_se l(1))) and (not 

(set_sel(2)));   

 

 

     equal_0<='1' when address_tag=tag_0 else  

               '0';  

 

     equal_1<='1' when address_tag=tag_1 else  

               '0';  

 

 

    hit_0<=equal_0 and valid_0;  

    hit_1<=equal_1 and valid_1;  

    hit<=hit_0 or hit _1;  

 

 

    least_used<='1' when (s='1' and hit_1='1' and darity='1') else  

                '0' when (s='1' and hit_0='1' and darity='1') else  

                least_used;  

 



 

mux_4_0:entity work.mux_4(arc_mux_4) port  

map(a=>block_0(0),b=>block_ 0(1),d=>block_0(2) ,e=>block_0(3) ,sel=>bloc

k_offset,  

c=>data_0);  

 

    mux_4_1:en tity work.mux_4(arc_mux_4) port 

map(a=>block_1(0),b=>block_1(1),d=>block_1(2),e=>block_1(3),sel=>bloc

k_offset,  

c=>data_1);  

 

    mux_2_0:entity work.mux_2(arc_mux_2) port 

map(a=>data_0,b=>data_1,s el=>hit_1,c=>data_out);  

 

    

process(clk,write_en,address_tag,block_offset,data_in,hit_0,darity)  

      begin  

        if(clk'event and clk='1') then  

          if(s='1')then  

          if(write_en='1')then  

            if(valid_0='0' or least_disabled='1' or hit_0='1')then  

              block_0(conv_integer(block_offset))<=data_in;  

              tag_0<=address_tag;  

              valid_0<=valid;  

              d_0<=darity;  

            else  

              block_1(conv_integer(block_offset))<=data_in;  

              tag_1<=address_tag;  

              valid_1<=valid;  

              d_1<=darity;  

 

            end if;  

          end if;  

        end if;  

        end if;  

      end process;  

 

      least_disabled<=least_used and (not darity);  

 

      tag0<=tag_0;  

      tag1<=tag _1;  

      least<=least_used;  

 

  end arc_set0;  

 

 

 

-- set1  
library ieee;  

use ieee.std_logic_1164.all;  

use ieee.std_logic_arith.all;  

 

entity set1 is  

  port(clk: in std_logic;  

       address: in unsigned(31 downto 0);  

       data_in: in unsigned(31 downto 0);  

       write_en: in std_logic;  

       valid: in std_logic;  

       darity: in std_logic;  

       data_out: out unsigned(31 downto 0);  

       hit: out std_logic;  

       least: out std_logic;  




