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CHAPTER ONE
ARCHITECTURE

1.1 Introduction
FEESPARCIs a BR single cycle Microprocessor which is based on SPARC
Architecture.

SPARC stands for Scalable ProcessohitdR@ire which is designed by Berkeley
University.
"RISC SPARC derived from Reduced Instruction Set Computer

1.2 Features

A 32-bit address space.
A Few and simple instruction format3 All instructions are 32 bits wide,
and are aligned on 32bit boundaries in memory
A There are only three basic instruction formats, and they feature uniform
placement of opcode and register address fields. Only load and store
instructions access memory and 1/0.
A Few addressingmodés A memory address its+ given b
registerk or Kregister + i mmediate. Kk
A Triadic register addressids Most instructions operate on two register
operands (or one register and a constant), and place the result in a third
register.
A A | arge Kwi nd dwiahkone irestgrt, progeam seksi8l e
global integer registers plus a 2register window into a larger register
file. The windowed registers can be described as a cache of procedure
arguments, local values, and return addresses.

1.3Glossary

The following paragraphs describerse of the most impant words and
acronyms used :

Current window
The block of 24r registers to which th&€urrent Window Pointer points.



Ignored

Used to describe an instruction field, the contents of which are arbitrary, and which

has no effectontheexc ut i on of the instruction. The ¢
will continue to be ignored in future versions of the architecture. See @served

and unusedmplementation Hardware or software that conforms to all the

specifications of an ISA.

Instruction Set Architecture (ISA)

An ISA defines instructions, registers, instruction and data memory, the effect of
executed instructions on the registers and memory, and an algorithm for controlling
instruction execution. An ISA does not define clock cycle tirogses per

instruction, data paths, etc.

Next Program Counter (nPC)
Contains the address of the instruction to be executed next (if a trap does not occur).

Privileged
An instruction (or register) that can only be executed (or accessed) when the
processoiis in supervisor mode (when PSR[S]=1).

Program Counter (PC)
Contains the address of the instruction currently being executed by the IU.

rsi, rs2, rd
Specify the register operands of an instructiasZ and rs2are the source registers;
rdis the destinton register

Reserved

Used to describe an instruction or register field which is reserved for definition by
future versions of the architecture. A reserved field should only be written to zero by
software. A reserved register field should read as zetwardware; software

intended to run on future versions of SPARC should not assume that the field will
read as zero.



Supervisor Mode
A processor state that is active when the S bit of the PSR is set (PSR[S] = 1).

Trap

A vectored transfer ofantrol to supervisor software through a table whose address
is given by a privileged IU register (the Trap Base Register (TBR)).

Unused

Used to describe an instruction field or register field that is not currently defined by
the architecture. When read bgoftware, the value of an unused register field is
undefined. However, since an unused field coulddeéned by a future version of

the architecture, an unused field should only be written to zero by software.

User Mode
A processor state that is aaiwhen the S bit of the PSR is not set (when PSR[S] = 0).

User Application Program
A program executed with the processor in user mode. Also simply called
Kapplication progr amk.



1.4 Registers

There are two types of registers: genepal r p o s@r loirn Kkw dat a
control / stat usklmd ¢iggemeaipsrjosckdyisterd atblaled

registers.

1.4.11U r Registers

A The IU contains 40 generglurpose 32bit rregisters.
A They are partitioned into @lobalregisters, plus egistersetsA
register set is further partitioned into 82 registers and 8oca/

registers.

Window Addressing

Windowed Register Address

r Register Address

in[0] - in[7]
local[0] —local[7]
out[0] - out[7]

global[0] - global[7]

t[24] = t[31]

1.4.1.Windowed r Registers

At a given time, an instruction can access thg/8bal/sand a 24 registerwindow
into the r registers. A register window comiges the 8n and 8 localregisters ofa
particular register set, together with the /8 registers of an adjacent register
set,which are addressable from the current windowagregisters.

The number of windows or register sets, NWINDOWS, ranges fram32,
depending on the implementation. The total numberoégisters in a given
implementation is 8 (for they/obals. plus the number of sets Q016 registers/set.

Thus, the minimum number of registers is 40 (2 sets), and the maximum number

is 520 (32 sets).

registe



The current window into ther registers is given by the current window pointer
(CWP), a bbit counter field inthe Processor State Register (PSR). The CWP is
incremented by a RESTORE (or RETT) instruction and decremented by a SAVE
instruction or a trap. Window overflow and underflow are detected via the window
invalid mask (WIM) register, which is controlled by gervisor software.



window (CWP + 1)

1[31]
: ins
1[24]
1[23]
: locals
1[16] window CWP
1[13] 1[31]
: outs ; ins
1[§] 1[24]
1[23]
. locals
1[16] window (CWP - 1)
1[15] 1[31]
; ouls : ins
1[8] 1[24]
1[23]
: locals
1[16]
1[13]
: outs
r[8]
7]
; globals
1]
1]0] 0
il 0

Three Overlapping Windows and the 8 Global Registers



1.4.1.20verlapping of window

Each window shares it&1sand outswith the two adjacent windows. Theuzsof the
CWPI1 window are addressable as the /nsof the current window, and thewtsin

the current window are thensof the CWPI1 window. The /ocalsare unique to each
window.

An rregister with addres® where 8 000015, refers to exactly the same register
as (+ 16) does after the CWP is decremented by 1 (modulo NWINDOWS).Likewise,
a register with address where 24 /0031, refers to exactly the same register as
address {0016) does after the CWP is incremented by 1 (modulo NWINDOWS).

Since CWRrithmetic is performed modulo NWINDOWS, the highest numbered
implemented window overlaps with window 0. Thautsof window 0 are theinsof

window NWINDOWSQ1. Implemented windows must be contiguously numbered
from O through NWINDOWS[1.

CWP
(current window')

CWP+1

The Windowed r Registers



1.4.2U Control/Status Registers
The 32 bit IU control/status registers include the Processor State Register (PSR), the
Window Invalid Mask register (WIM), the Trap Base Register (TBR), the program

counters (), and optional, implementatiedependent Ancillary State Registers
(ASRs).

1.4.2.1Processor State Register (PSR)

The 32 bit PSR contains various fields that control the processor and hold status
information. It can be modified by the SAVE, RESTO&E afd RETT instructions,
and by all instructions that modify the condition codes. The privileged RDPSR and
WRPSR instructions read and write the PSR directly.

F5R Fields

Impl ver lee reserved EC|EF PIL S|PS|ET CWP

31:28 T4 23:20 19:14 3 12 11:8 T 6 5 40

The PSR provides the following fields:

PSR_implementation (impl)

Bits 31 through 28 are hatwired to identify an implementation or class of
implementations of the architecture. The hardware should not change
this field inresponse to a WRPSR instruction. Together, the$&nd PSRer
fieldsdefine aunique implementation o class of implementations of the

architecture.

PSR_version (ver)

Bits 27 through 24 are implementatienlependent. Theerfield is either hardwired
to identify one or more particular implementations or is a readable and writable
state field whose propées are implementatiordependent



PSR_integer_cond_codes (icc)

Bits 23 through 20 are the I UJs condition
arithmetic and logical instructions whose names end with the lettgrée.g.,ANDcc),

and by the WRPSR institian. The Bicc and Ticc instructions cause a transfer of

control based on the value of these bits, which are defined as follows:

PSR_negative (n)
Bit 23 indicates whetherthe3d i t 2Js compl ement ALU result
last instruction that modied the/ccfield. 1 = negative, 0 = not negative.

PSR_zero (2)
Bit 22 indicates whether the 3bit ALU result was zero for the last instruction that
modified the/ccfield. 1 = zero, 0 = nonzero.

PSR_overflow (v)

Bit 21 indicates whether the ALU nal$ was within the range of (was representable
inN32-bit 2Js complement notation ficor the | asi
field. 1 = overflow, O = no overflow.

PSR _carry (c)

Bit 20 indicates whether a 2Js orthempl ement
last instruction that modified theccfield. Carry is set on addition if there is a carry

out of bit 31. Carry is set on subtraction if there is borrow into bit 31. 1 =carry, 0 =

no carry.

PSR_reserved

Bits 19 through 14 are reserved. When reagl® RDPSR instruction, these bits

deliver zeros. For future compatibility, supervisor software should only issue WRPSR
instructions with zero values in this field.



PSR_enable_coprocessor (EC)

Bit 13 determines whether the implementatiatependent coproasor is enabled.If
disabled, a coprocessor instruction will trap. 1 = enabled, 0 = disabled. If an
implementation does not support a coprocessor in hardware, PSR.EC should always
read as 0 and writes to it should be ignored.

PSR_enable_floatingoint (EF)

Bit 12 determines whether the FPU is enabled. If disabled, a floatimy

instruction will trap. 1 = enabled, 0 = disabled. If an implementation does
not support a hardware FPU, PSR.EF should always read as 0 and writes to it should
be ighored.

PSR_proc_interrupt_level (PIL)
Bits 11 (the most significant bit) through 8 (the least significant bit) identify the
interrupt level above which the processor will accept an interrupt.

PSR _supervisor (S)
Bit 7 determines whether the processornssupervisor or user mode. 1 = supervisor
mode, 0 = user mode.

PSR_previous_supervisor (PS)
Bit 6 contains the value of the S bit at the time of the most recent trap.

PSR_enable_traps (ET)

Bit 5 determines whether traps are enabled. A trap automaticabgts ET to 0.

When ET=0, an interrupt request is ignored and an exception trap causes the IUto
halt execution, which typically results in a reset trap that resumes execution at
address 0. 1 = traps enabled, 0 = traps disabled.



PSR_current_window_pointédCWP)

Bits 4 (the MSB) through O (the LSB) comprise the current window pointer, a

counter that identifies the current window into theregisters. The hardware

decrements the CWP on traps and SAVE instructions, and increments it on RESTORE
and RETT ingtictions (modulo NWINDOWS).

1.42.2 Window Invalid Mask Register (WIM)

The Window Invalid Mask register (WIM) is controlled by supervisor software and
is used by hardware to determine whether a window overflow or underflow trap is
to be generated by a 8&, RESTORE, or RETT instruction

WIM Fields

(W31W30 W29 - W2 |W1|Wo

3l 30 29 2 1 0

There is an active state bit in the WIM for each register set or window in an
implementation. WIM[7] corresponds to the register set addressed when CWP =

When a SAVE, RESTORE, or RETT instruction executes, thealurenf the
CWP is compared against the WIM. If the SAVE, RESTORE, or RETT instruction
woul d cause the CWP to point to an Kinval i
corresponding WIM bit equals 1 (WIM[CWP] = 1), a window_overflow or
window_underflow trapis caused.

The WIM can be read by the privileged RDWIM instruction and written by the
WRWIM instruction. Bits corresponding to unimplemented windows read as zeroes
and values written to unimplemented bits are unused. A WRWIM with all bits set to
1, followed by a RDWIM, yields a bit vector in which the implemented windows
(and only the i mplemented windows) are ind

The WIM allows for implementations with up to 32 windows.



1.4.23 Trap Base Register (TBR)

The Trap Base Register (TBR) costéimee fields that together equal the address to
which control is transferred when a trap occurs.

TBR Fields

TBA ft Zero

31:12 114 30

The TBR provides the following fields:

TBR_trap_base address (TBA)

Bits 31 through 12 are the trap base address, which is established by supervisor
softvare. It contains the mossignificant 20 bits of the trap table address. The TBA
field is written by the WRTBR instruction.

TBR_trap_type (tt)

Bits 11 through 4 comprise the trap typé#)(field. This 8bit field is written by the
hardware when a trappccurs, and retains its value until the next trap. It provides an
offset into the trap table. The WRTBR instruction does not affeat tiedd.

TBR_zero (0)

Bits 3 through O are zeroes. The WRTBR instruction does not affect this field.For
future compdibility, supervisor software should only issue a WRTBR instruction
with a zero value in this field.



1.4.24Ancillary State Registers (ASR)

SPARC provides for up to 31 Ancillary Stat
31.

ASRJ s n uibblare resenved for future use by the architecture and should
not be referenced by software.

ASRJs n u nhare awailablé 6r implementatiemependent uses, such as
timers, counters, diagnostic registers, gelt registers, and trapontrol registersA
particular | U may choose to i mplement from
semantics of accessing any of these ASRJs |
particular Ancillary State Register is privileged or not is implementati@pendent.

An ASRsd read and written with the RDASR and WRASR instructions. A read/write
ASR instruction is privileged if the accessed register is privileged.



1.5Instructions

Instructions are accessed by the processor from memory and are executed,
annulled, or trapped. Instructions are encoded in three-BR2 formats and can be
partitioned into four general categories. There are 72 basic instruction operations.

Instructions fall into four basic categories:
1) Load/store

2) Arithmetic/logical/shift

3) Control transfer

4) Read/write control register

1.5.1 Instruction Formats
Instructions are encoded in three major 34t formats.

Format 1 (op=1): CALL

‘ op | disp30
3 29 0

Format 2 (op=0): SETHI & Branches (Bicc, FBfce, CBecc)

op rd op2 imm?22
op | a | cond | op2 disp22
3 29 28 24 71 0

Format 3 (op=2or3): Remaining instructions

op rd op3 sl =0 asi 152
op rd op3 sl =1 simm13




1.5.2 Instruction Fields

The instruction fields are interpreted as follows:

op and op2

These 2 and 3-bit fields encodehe 3 major formats and the format 2 instructions

op Encoding (All Formats)

Format op Instructions

1 1 CALL

2 0 Bicc, SETHI

3 3 memory instructions
3 2 hnaettc, logical, shift, and
remaining

op2 Encoding (Format 2)

op2 Encoding (Format 2)

0 UNIMP

1 unimplemented

2 Bicc

3 unimplemented

4 SETHI

5 unimplemented




rd

This 5 bit field is the address of the destination for a load/arithmetic (or store)
instruction. For an instruction that read/writes a double (or quad), the least
significant one (or two) ks are unused and should be supplied as zero by software.

a
Theabit in a branch instruction annuls the execution of the following instruction
if the branch is conditional and untaken or if it is unconditional and taken.

cond
This 4 bit field selec$ the condition code(s) to test for a branch instruction.

imm22
This 22 bit field is a constant that SETHI places in the upper end of a destination
register.

disp22and disp30
These 30bit and 22 bit fields are wordaligned, sigrextended, PCelative
displacements for a call or branch, respectively.

op3
This 6 bit field (together with 1 bit fromop) encodes the format 3 instructions.

[

The/bit selects the second ALU operand for (integer) arithmetic and load/store
instructions. If/ = 0, the opeand is r[rs2]. If/= 1, the operand isimm13 sign
extended from 13 to 32 bits.

as/
This 8 bit field is the address space identifier supplied by a load/store alternate
instruction.

rsi

This 5 bit field is the address of the firstregister source jperand. For an instruction
that reads a double (or quad), the least significant bit (or 2 bits) are unused and
should be supplied as zero by software.



rs2

This 5 bit field is the address of the secontkegister source operand wheir 0. For
an instrucion that reads a doubiéength (or quadlength) register sequence, the
least significant bit (or 2 bits) are unused and should be supplied as zero by
software.

simml13

This 13 bit field is a sigrextended 13bit immediate value used as the second ALU
operard for an (integer) arithmetic or load/store instruction wher 1.



1.5.2nstruction Definitions

Instruction Set

Opcode Name
LD (LDA) Load Word (from Alternate spac
ST (STA) Store Word (into Alternate

SWAP (SWAPA)
Alternate space)

SETHI

NOP

AND (ANDcc)
ANDN (ANDNCcc)
OR (ORcc)

ORN (ORNcc)
XOR (XORcc)
XNOR (XNORcc)
SLL

SRL

SRA

ADD (ADDcc)
SUB (SUBcc)
SAVE

RESTORE

Swap r Register with Mem¢

Set High 22 bits of r Regis
No Operation
And (and modify icc)
And Not (and modify icc)
Inel0sifend modify icc)
Inclusive- Or Not (and modifyicc)
Exesi@d modify icc)
ExeNsiv@and modify icc)
Shift Left Logical
Shift Right Logical
Shift Right Arithmetic
Add (and modify icc)
Subtract (and modify icc)

Save callerlJds v




Bicc Branchon integer condition code
CALL Call and Link

JMPL Jump and Link

RETT Return from Trap

Ticc Trap on integer condition
RDASR Read Ancillary $ttee Reg
RDPSR Read Processor State R
RDWIM Read Window Invalid Mask Regist
RDTBR Read Trap Base Register
WRASR Write Ancillary State Re
WRPSR Write Prodsdeedister
WRWIM Write Window Invalid Mask Registe
WRTBR Write Trap Base Regist




Load Integer Instruction

opcode op3 operation

LD 000000 Load Word
LDA 010000 Load Word from
Alternate space

Format (3):

11 1d op3 1sl =0 asl 152

3 X 24 18 13 12 1 0

11 1d op3 1sl =1 simm13

I 24 18 13 12 0
Description:

The load integer instructions copy a word from memory intadf]

The effective addr esrs]+fril] ka i/ffelol & fewjon st r uct i
K rsf] + sign_extéimm13 k i/ffeld s dne. Instructions that load from an
alternate address space contain the address space identifier to be used for the load in
the asfield, and must contain zero in théfield or an illegal_instruction trap will
occur. Load instictions that do not load from an alternate address space access
either a user data space or system data space, according to the S bit of the PSR.



Store Integer Instruction

opcode op3 operation

ST 000100 Store Word
STA 010100 Store Word into
Alternate space

Format (3):

11 rd op3 15l =0 asi 1s2

a2 24 18 13 12 1 0

11 rd op3 15l =1 simm13

T 24 18 13 12 0
Description:

The store integer instructions copy the word fronra] into memory.

The effective addr ess]+Hrosf] ka i/feldasrdem, i nst ruct
or rs]w $ign_extéimmi3 k i/ffeld is dne. Instructions that store to an
alternate adress space contain the address space identifier to be used for the store
in the asfield, and must contain zero in théfield or an illegal_instruction trap will
occur. Store instructions that do not store to an alternate address space access either
a user data space or system data space, according to the S bit of the PSR.



SWAP Register with Memory Instruction

opcode op3 operation

SWAP oami1 SWAP register with
memory

SWAPA 011111 SWAP register with
Alternate space memory

Format (3):

11 rd op3 151 1=0 asi 152

T 24 18 172 { 0

11 1d op3 151 =1 simm13

R 24 18 13 0
Description:

The SWAP and SWAPA instructions exchangd with the contens of the word at
the addressed memory location.

The effective addr esslorfrsak SMAdRsteen st ructi o
or

K rsf] + sign_exte/mm13 k i/ffeld is tne. SWAPA must contain zero in the

field, or an illegal_instrution trap will occur. The address space identifier used for
the memory accesses is taken from #sfield. For SWAP, the address space is either
a user or a system data space, according to the S bit in the PSR.



SETHI Instruction

opcode op op2 operation

SETHI 00 100 SaDHligh22 bits
Format (2):

00 rd 100 imm?22

3 29 21 21 0
Description:

SETHI zeroes the | emsk, sa rgsitsHighprdea?d

bits with the value from itsmm22field.

SETHI does not affect the condition codes.

A SETHI instruction witltd = 0 and/immZ22= 0 is defined to be a NOP instruction.

10

bits



NOP Instruction

opcode op op2 operation

NOP 00 100 No Operation

Format (2):

00 | 00000 | 100 —0—
329 21 21 0
Description:

The NOP instruction changes no prograwsible state (except the PC and nPC).

Note that NOPsi a special case of the SETHI instruction, witm22= 0 andrd =
0.



Logical Instructions

opcode op3 operation

AND 000001 And

ANDcc 010001 And and modify icc

ANDN 000101 And Not

ANDNcc 010101 And Not and modify icc

OR 000010 Inclusive Or

ORcc 010010 Inclusive Or and modify icg

ORN 000110 Inclusive Or Not

ORNcc 010110 Inclusive Or Not and modify icq

XOR 000011 Exclusive Or

XORcc 010011 Exclusive Or and modify icc

XNOR 000111 Exclusive Nor

XNORcc 010111 Exclusive Nor and modify icg
Format (3):

10 1d op3 151 i=0 | unused(zero) 152

] 24 18 13 I 1 0

10 1d op3 15l 1=1 simm13

31 » 24 18 13 1 0



Description:

These instructions i mplement thershbitwise |
operationr[rs k i/ffi @ lhe | ssioperationsigro extcmmi3 ikthe /
field is one, and write the result into ).

ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition
codes [c0).

ANDN, ANDNcc, ORN, and ORNCcc logically negate their second operand before
applying the main (AND or OR) opegtion.



Shift Instructions

opcode op3 operation

SLL 100101 Shift Left Logical
SRL 100110 Shift Right Logical

SRA 100111 Shift Right Arithmet

Format (3):

10 il op3 151 i=0 | unused(zero) 1s2

I » 24 18 312 1 0

10 rd op3 151 i=1 | wunused(zero) shent

3 2 24 18 3 12 1 0
Description:

The shift count for these instructions is the least significard bits of rjs] if the /
field is zero, or the value isAcnfif the /field is one.

When /is 0, the most significant 27 bits of the value imgf] are ignored.Wherris
1, bits 5 through 12 of the shift instruction are reserved and should be sagps
zero by software.

SLL shifts the value ofrd7] left by the number of bits given by the shift count.

SRL and SRA shift the value @&/ right by the number of bits implied by the shift
count.



SLL and SRL replace vacated positions with semdeereas SRA fills vacated
positions with the most significant bit of $.2]. No shift occurs when the shift count
iS zero.

All of these instructions write the shifted result into@]. These instructions doot
modify the condition codes.



Add Instructions

opcode op3 operation
ADD 000000 Add
ADDcc 010000 Add and modify icc

Format (3):

‘ 10 | rd ‘ op3 ‘ rsl ‘ i=0 ‘ unused(zero) ‘ rs2 ‘
31 29 24 18 13 2 4 0

‘ 10 | rd ‘ op3 ‘ rsl ‘ =1 ‘ simm13 ‘
31 29 24 18 13 2 0

Description:

ADD and ADDc esl erpgdpku tigfi kKerlfee 1 ssflzer o,
sign_exte/mm13 k i/ffeld is dne, and write the sum intosdf).

ADDcc modifies the integer condition codesdj. Overflow acurs on addition if
both operands have the same sign and the sign of the sum is different.



Subtract Instructions

opcode op3 operation

SUB 000100 Subtract

SUBcc 010100 Subtract and modify
Format (3):

10 rd op3 151 i=0 | unused(zero) 1s2

31 2 24 18 13 1z 1 0

10 rd op3 151 1=1 simm13

T 24 18 13 12 0
Description:

These instr ucrsllilliirinsgd kc d/ifip éthee Ksgsflzer o, or

O0sign_ext(simm13 k

i/ffeld s tne, and write the difference intor]].

SUBcc modifies the integer condition codes)( Overflow occurs on subtraction if
the operands have different signs and the sign of the difference differs from the sign

of r[rs]].

Kr [



SAVE and RESTORE Instructions

opcode op3 operation
SAVE
RESTORE 111101

Format (3):

10 rd op3 151 i=0 | unused(zero) 1s2

3 29 24 18 13 12 4 0

10 rd op3 151 1=1 simm13

R 24 18 13 12 0
Description:

The SAVE instruction subtracts one from the CWP (modulo NWINDOWS) and
compares this value (new_CWP) against the Window Invalid Mask (WIM) register.
If the WIM bit corresponding to the new_CWP is 1, that is, (WIM ante® CWhH=
1, then a window_overflow trap is generated. If the WIM bit corresponding to the
new_CWRP is 0, then no window_overflow trap is generated and new_CWP is
written into CWP. This causes the curreningdow to become the CWPIO1 window,
thereby saving the callerds window.

The RESTORE instruction adds one to the CWP (modulo NWINDOWS) and
compares this value (new_CWP) against the Window Invalid Mask (WIM) register.
If the WIM bit corresponding to the newCWP is 1, that is, (WIM andrizw_ CWE =
1, then a window_underflow trap is generated. If the WIM bit corresponding to the
new_CWP = 0, then no window_underflow trap is generated and new_CWP is
written into CWP. This causes the CWPI1 window to become the current window,
thereby restoring the callerJs window.



Branch on Integer Condition Codes Instructions

opcode cond operation icc test
BNE 1001 Branch on Not Equal notZ
BE 0001 Branch on Equal

BG 1010 Branch on Greater not
(Z or (Nxor V))

C BCS 0101 Branch on Carry Set

Format (2):

00 | a cond 010 disp22
329 28 24 21 0
Description:

Conditional Bicc instructions evaluate the integer condition codes,(according

to the condfield of theinst uct i on. I f Ktruek, the branch i :
instructioncausesaR€ el ati ve, del ayed control transfe
OOsign_ext(disp2gd ) k. | f Kfal sek, the branch is not



Call and Link Instruction

opcode op operation
CALL 01 Call and Link

Format (1):

| o1 | disp30
31 29 [
Description:

The CALL instruction causes an unconditional, delayedre?&live controltransfer
to address “PC + (4 00disp3g k. Si nce t he dgmsdfieldid B0Disl ac e ment
wide, the target address can be arbitrarily distant. TherBl@tive displacement is
formed by appendingtwolovor der zer os t o-bitvioel i nstructi or
displacement fiel.

The CALL instruction also writes the value of PC, which contains the address of the
CALL, into r[15] butreqister 7).



Jump and Link Instruction

opcode op3 operation
JMPL 111000 Jump and Link

Format (3):

10 rd op3 151 i=0 | unused(zero) 152

31 29 24 18 13 12 4 0

10 rd op3 151 i=1 simm13

31 29 24 18 13 12 0
Description:

The JMPL instruction causes a regisiedirect delayed control transfer to the
addr ess gstflvgs] K yi/fikre[lhee | sslz signoexteimoml3 Kr [
if the /field is one.

The JMPL instruction copies the PC, which contains the address of the JMPL

instruction, into register rfa.



Return from Trap Instruction

opcode op3 operation
RETT 111001 Return from Trap

Format (3):

unused :
. — <
10 (zero) op3 rsl i=0 unused(zero) 152
i 24 18 13 12 1 0
unused _ _ .
10 (zero) op3 151 1 simm13
31 29 24 18 13 12 0
Description:

RETT is used to return from a trap handler. Under some circumstances, RETT may
itself cause a trap. If a RETT ingtiion does not cause a trap, it (1) adds 1 to the
CWP (modulo NWINDOWS), (2) causes a delayed control transfer
to the target address, (3) restores the S field of the PSR from the PS field, and (4) sets
the ET field of the PSRIo. The t ar gsf+resd &r e/Beklisites®, Kr |
or rsf]r $ign extéimmi3 k i/ffeld is dne.



Trap on Integer Condition Codes Instruction

opcode cond operation cc test

TNE 1001 Trap on Not Egal notZ

TE 0001 Trap on Equal Z

TG 1010 Trapon Greaéer not (Z or (N xor V))
TCS on Trap on Carry 8t C

Format (3):

10| reserved| cond [111010 sl 1=0 reserved 152
31 29 78 21 i8 13 17 4 0
10| reserved| cond [111010 sl =1 reserved imm?7

31 29 28 21 18 13 17 6 0
Description:

A Ticc instruction evaluates the integer condition codes)(according to thecond
fieldofthe i nstruction, producing either a Ktru
higher priority exceptions or interrupt requests are pending, then a trap_instruction
trap is generated. | f Kfalsek, a trap_inst
instruction belaves like a NOP.

If a trap_instruction trap is generated, thefield of the Trap Base Register (TBR) is
written with 128 plus t hmlHresd kt i/8eldd ief i c an:
is zero, or 128 plus the least significant seven bitkafsf] + s i gn/fieddxt k 1 f t |
is one.

After a taken Ticc, the processor enters supervisor mode, disables traps,decrements
the CWP (modulo NWINDOWS), and saves PC and nPC into r[17] and A&/ (
registers 1 and 2) of the new window.



Read State Bister Instructions

opcode op3 rsl operation

RDPSR 101001 0 Read Processor State
Register

RDWIM 101010 1 Read Window Invalid

Mask Register

RDTBR 101011 2 Read Trap Base Regist
RDASR 101000 3 Read Ancillary State
Register

Format (3):

10 rd op3 rsl Eggﬁgf unused(zero)
3 29 24 18 13 12 0
Description:

These instructions read the specified IU state register intd.r[

Ancillary state registers may include (for example) timer, counter, diagnostie, self
test, and trapcontrol registsr



Write State Register Instructions

opcode op3 rsl operation

WRPSR 110001 0 Write Process
Register

WRWIM 110010 1 Write Window

Invalid Mask Register

WRTBR 110011 2 Write Trap Bag
Register
WRASR 110000 3 Write Ancillary Sta
Register

Format (3):

10 rd op3 151 =0 | wunused(zero) 1s2
] 24 18 1312 1 0
10 rd op3 15l =1 simm13

T 24 18 13 12 0
Description:

WRPSR, WRWI M, WRASR, rsixord[/siVR T B/feldstemt e Kr [
o r rsH] xof sign_exteimmi13 k i/ffeld is dne, to thewtable fields of the
specified U state register.

Ancillary state registers may include (for example) timer, counter, diagnostie, self
test, and trapcontrol registers.



CHAPTER TWO
MICROARCHITECTURE

2.1 INTRODUCTION

In this chapter, you will learrhow to piece together a MIPS migpoocessor.
Indeed, you will puzzle out three different versions, each with different trade
offs between performance, cost, and complexity.

To the uninitiated, building a microprocessor may seéma black magic. But

it is actually relatively straightforward, and by this point you have learned
everything you need to know. Specifically, you have learned to design combinational
and sequential logic given functional and timing specificats. You are familiar

with circuits for arithmetic and memory.

And you have learned about the MIPS architecture, which specifies the
programmer's view of the MIPS processor in terms of registers, insomns,

and memory.

This chapter coversmicroarchitecture which is the connection between
logic and architecture. Microarchitecture is the specific arrangement of registers,
ALUs, finite state machines (FSMs), memories, and other logic building blocks
needed to implement an architecture. A particular architecture, such as MIPS,
may have many different microarchitectures, each with different trade
offs of performance, cost, and complexity. They all run thee sa

programs, but their internal designs vary widely. We will design three
different microarchitectures in this chapter to illustrate the tradfs.

This chapter draws heavily on David Patterson and John Hennessy's classic
MIPS designs in their texfomputer Organization and Desigihey have
generously shared their elegant designs, which have the virtue of illustrating a real
commercial architecture while being relatively simple and easy to understand.

2.1.1 Architectural State and Instruction Set

Recall that a computer architecture is defined by its instruction set and
architectural state The architectural state for the MIPS processor consists of the
program counter and the 32 register&ny MIPS microarchitecture must contain all
of this state. Based on the current architectural state, the processor executes a
particular instruction with a particular set of data to produce a new



architectural state. Some microarchitecturesntain additional

nonarchitectural stateto either simplify the logic or improve performance; we
will point this out as it arises.

To keep the microarchitectures easy to understand, we consider only a subset
of the MIPS instruction se®pecifically,

We handlethe following instructions:

R type arithmetic/logic instructions: add, sub, and, or, slt
Memory instructions: Iw, sw

Branches: beq

After building the microarchitectures with these instructions, we extrin
to handle @di and j.These particular instructions were chosen because they are
sufficient to write many interesting programs. Once you understand how to
implement these instructions, you can expathmg hardware to handle others.

2.1.2 Design Proces

We will divide our microarchitectures into two interacting parts: the
datapath and the control. The datapath operates on words of data. It contains
structures such as memories, registers, ALUs, and multiplexers.

MIPS is a 32vit architecture, so we will use a 3ddt datapath. The control

unit receives the current instruction from the datapath and tells the datapath
how to execute that instruction. Specifically, the control unit prauc
multiplexer select, register enable, and memory write signals to control the
operation of the datapath.

A good way to design a complex system is to start with hardware containing
the state elements. These elements include the mesnarid the architectural
state (the program counter and registers). Then, add blocks of combinational
logic between the state elements to compute the new state based on the current state.
The instruction is read from part of memory; load arsfore instructions then
read or write data from another part of memory. Hence, it is often
convenient to partition the overall memory into two smaller memories, one
containing instructions and the other containing datFigure 7.1 shows a

block diagram with the four state elements: the program counter, register file, and
instruction and data memories.

In Figure 7.1, heavy lines are used to indicateb82data busses.



Medium lines are used tandicate narrower busses, such as th&ibaddress
busses on the register file. Narrow blue lines are used to indicatecontrol signals,
such as the register file write enable. We will use this convention throughout
the chapter to avoidclitering diagrams with bus widths. Also, state elements usually
have a reset input to put them into a known state at stgst Again, to save clutter,

this reset is not shown.

The program counter is an ordinary 3@t register. Its output, PC,ipts to

the current instruction. Its input, PC_, indicates the address of the next
instruction.

The instruction memory has a single read port. 1 It takes -dit3Rstruction
address input, A, and reads the-BR data (i.e instruction) from that address
onto the read data output, RD.

The 32 element _ 32bit register file has two read ports and one write port. The

read ports take it address inputs, A1 and A2, each specifying one of 2 5_ 32
registers as sourceperands. They read the -3fit register values onto read

data outputs RD1 and RD2, respectively. The write port takes bét &ldress input,
A3; a 32bit write data input, WD; a write enable input, WE3; and a clock.
If the write enable is 1, the register file writes the data into the specified register
on the rising edge of the clock.

The data memory has a single read/write port. If the write enable, WE, is 1,
it writes data WD into address A on theing edge of the clock. If the write
enable is 0, it reads address A onto RD.

The instruction memory, register file, and data memory are all read
combinationally. In other words, if the address changes, the new data appears
at RD after some propagation delay; no clock is involved. They are written
only on the rising edge of the clock. In this fashion, the state of the system is
changed only at the clock edge. The address, data, and write emaisie

setup sometime before the clock edge and mustremain stable until a hold
time after the clock edge.

Because the state elements change their state only on the rising edge of the clock,
they are synchronous sequential circuifBhe microprocessor is built of

clocked state elements and combinational logic, so it too is a synchronous
sequential circuit. Indeed, the processor can be viewed as a giant finite state
machine, or as a collection of simplmteracting state machines.



2.1.3 MIPS Microarchitectures

In this chapter, we develop three microarchitectures for the MIPS processor
architecture: singlecycle, multicycle, and pipelined. They differ in

the way that the statelements are connected together and in the
amount of nonarchitectural state.

The single cycle microarchitectureexecutes an entire instruction in one cycle.
It is easy to explain and has a simple control unit.

Because it completes the operation in one cycle, it does not require any
nonarchitectural state. However, the cycle time is limited by the slowest
instruction.

The multicycle microarchitectureexecutes instructions in a serie$ shorter
cycles. Simpler instructions execute in fewer cycles than complicated ones.
Moreover, the multicycle microarchitecture reduces the hardware cost by
reusing expensive hardware blocks such as adders and memboes.
example, the adder may be used on several differentcycles for several
purposes while carrying out a single instruction. The multicycle microprocessor
accomplishes this by adding several nonarchitectural regisiersiold
intermediate results. The multicycle processor executes only one instruction at
a time, but each instruction takes muilti

ple clock cycles.

Thepipelined microarchitectureapplies pipelining to the singleycle
microarchitecture. It therefore can execute several instructions simultaneously,
improving the throughput significantly. Pipelining must add logic to
handle dependencies between simultaneously executing instructions. It also
requires nonarchitetural pipeline registers. The added logic and registers are
worthwhile; all commercial highperformance processors use pipelining today.
We explore the details and trad#fs of these three microarchitectures in the
subsequent sectien At the end of the chapter, we briefly mention additional
techniques that are used to get even more speed in moderspeigbhrmance
microprocessors.

2.2 PERFORMANCE ANALYSIS

As we mentioned, a particular processor architeetean have many
microarchitectures with different cost and performance tradis. The cost
depends on the amount of hardware required and the implementation



technology. Each year, CMOS processes can pack more transistansiprioa

the same amount of money, and processors take advantage

of these additional transistors to deliver more performance. Precise cost
calculations require detailed knowledge of the implementation technology, but
in general, moregates and more memory mean more dollars.

This section lays the foundation for analyzing performance.

There are many ways to measure the performance of a computer system, and
marketing departments are infamous for choosittte method that makes
their computer look fastest, regardless of whether the measurement has any
correlation to real world performance. For example, Intel and Advanced Micro
Devices (AMD) both sell compatible microprocessarsnforming to the

IA-32 architecture. Intel Pentium Ill and Pentium 4 microprocessors were
largely advertised according to clock frequency in the late 1990s and
early 2000s, because Intel offerdadgher clock frequencies than its
competitors. However, Intel's main competitor, AMD, sold Athlon
microprocessors that executed programs faster than Intel's chips at the
same clock frequency. What is a consumer to do?

The only gimmickfree way to measure performance is by measuring the
execution time of a program of interest to you. The computer that executes your
program fastest has the highest performance. The next best choice is to
measure thetotal execution time of a collection of programs that are similar

to those you plan to run; this may be necessary if you haven't written your
program yet or if somebody else who doesn't have your program is making
the measurements. Such collections of programs are called benchmarks, and the
execution times of these programs are commonly published to give some indication
of how a processor performs.

The execution time of a program, measured in secondgivén by Equation

7.1.

_ , . N\ ceycles seconds\ . ..
Execution Time = (# uisrrucrmns)( ) )( ) (7.1)

(anstruction )\ cycle

The number of instructions in a program depends on the processor
architecture. Some architectures have complicated instructions that do more
work per instruction, thus reducing the number of insttions in a program.
However, these complicated instructions are often slower to execute in hardware.
The number of instructions also depends enormously on the cleverness of the



programmer. For the purposes of this chapter, wd aggume that we are
executing known programs on a MIPS processor, sothe number of
instructions for each program is constant, independent of the
microarchitecture.

The number of cycles per instruction, often callé®| isthe number of

clock cycles required to execute an average instruction. It is the reciprocal of
the throughput (instructions per cycle, dPQ. Different microarchitectures

have different CPIs. In this chapter, we will asswme have an ideal

memory system that does not affect the CPI. In Chapter 8, we examine how
the processor sometimes has to wait for the memory, which increases the CPI.

The number of seconds per cycle is the clock pefod,The clock period is
determined by the critical pathhrough the logic on the procesr. Different
microarchitectures have different clock periods. Logic and circuit designs also
significantly affect the clock period. For exampdecarry-lookahead adder is
faster than a ripplecarry adder. Manufacturing advances have historically
doubled transistor speeds every64years, so a microprocessor built today will
be much faster than one from last decade, even ifrtiteoarchitecture and

logic are unchanged.

The challenge of the microarchitect is to choose the design that minimizes the
execution time while satisfying constraints on cost and/or power consumption.
Because microarchitectural decisionsfeat both CPI andl c and are

influenced by logic and circuit designs, determining the best choice requires
careful analysis.

There are many other factors that affect overall computer performance. For
example, the hard disk, thememory, the graphics system, and the network
connection may be limiting factors that make processor performance
irrelevant. The fastest microprocessor in the world doesn't help surfing the
Internet on a dialup connection.But these other factors abeyond the scope

of this book.

2.3 SINGLECYCLE PROCESSOR

We first design a MIPS microarchitecture that executes instructions in a single
cycle. We begin constructing the datapath by connecting th&e slements

from Figure 7.1 with combinational logic that can execute the various
instructions. Control signals determine which specific instruction is carried out by
the datapath at any given time. The controller contains contibimal logic



that generates the appropriate control signals based on the current instruction.
We conclude by analyzing the performance of the singiele processor.

2.3.1 SingleCycle Datapath

CLK CLK CLK
| | | |
PC'V]|PC N WE3 D1 N WE
32 2 A RD | 75 O1 =
-+ A2 RD2 =~
Instruction 5 a2 %A RD %
nﬂe]ﬂ"oryI Data
1 A3 Raalst Memory
egister
—;3‘? WD3 File —,3‘3 WD

Figure 7.1 State elements of MIPS processor

Figure 7.2 Fetch instruction
A RDb— from memory

Instruction
Memory

This section gradually develops tlengle cycle datapath, adding one piece at

a time to the state elements from Figure 7.1. The new connections are
emphasized in black (or blue, for new control signals), while the hardware that
has already been studied is showngray.

The program counter (PC) register contains the address of the instruction
to execute. The first step is to read this instruction from instruction memory.
Figure 7.2 shows that the PC is simply connected to tidress input of the
instruction memory. The instruction memory reads out, or fetches, thi82
instruction, labeled Instr.



The processor's actions depend on the specific instruction that was fetched.
First we will work outthe datapath connections for the Iw instruction.
Then we will consider how to generalize the datapath to handle the other
instructions.

For alw instruction, the next step is to read the source register
containing the base address. This register is specified in the rs field of the
instruction, Instr25:21 . These bits of the instruction are connected to the
address input of one of the register file read ports, Al, as shown in Figuréhe3.
register file reads the register value onto RD1.

The lw instruction also requires an offset. The offset is stored in the immediate field
of the instruction, Instrl5:0. Because the-l® immediate might be either
positive or negativeit must be sigrextended to 32 bits, as shown in

Figure 7.4. The 3Bit signextended value is called Signlmm. Recall from
Section 1.4.6 that sign extension simply copies the sign bit (most significant
bit) of ashort input into all of the upper bits of the longer output.
Specifically, Signimm15:0 _ Instr15:0 and Signimm31:16 _ Instrl5.

2821
nstr P > Figure 7.3 Read source operand
from register file

Figure 7.4 Sign-extend the
immediate




The processor must add the base address to the offset to find the address to
read from memory. Figure 7.5 introduces an ALU to perform this addition.
The ALU receives two operan@cA and SrcB SrcAcomes from the

register file, andSrcBcomes from the sigextended immediate. The ALU can
perform many operations, as was described in Section 5.2.4. Tie 3
ALUControl signal specifies the operation. The ALU generates -®it32
ALUResultand a Zero flag, that indicates whetheALUResult 0. For alw

to add the basenstruction, the ALUControl sgnal should be set to 010

address and offseALUResultis sent to the data memory as the address
for the load instruction, as shown in Figure 7.5.

The data is read fro the data memory onto thReadDatabus, then written

back to the destination register in the register file at the end of the cycle, as
shown in Figure 7.6. Port 3 of the register file is the write port.

The destinabn register for the lw instruction is specified in the rt field,
Instr20:16 , which is connected to the port 3 address ingd;, of the

register file.
Srad ..J\l\ Zem

ALLIPasut

Signimm

Figure 7.5 Compute memery address

ReazDate

Figure 7.6 Write data back to register file



The ReadDatabus is connected to the port 3 write data inpWD3, of the
register file. A control signal call&kgWriteis connected to the port 3
write enable input, WE3 and is asserted during a lw instruction so that the
data value is written into the register file. Theitertakes place on the rising
edge of the clock at the end of the cycle.

While the instruction is being executed, the processor mustcompute
the address of the next instructioRC . Because instructions are dits _ 4

bytes, the next instruction is &C_ 4. Figure 7.7 uses another adder to
increment thePCby 4. The new address is written into the program counter on the
next rising edge of the clock.

PLCPusd

Figure 7.1 Determine address of next instruction for PG

This completes the datapath foretliw instruction. Next, let us extend the
datapath to also handle the sw instruction. Like the Iw instruction, the sw
instruction reads a base address from port 1 of the register and esttgnds an
immediate. The ALBdds the base aoess to the immediate to find the
memory address. All of these functions are already supported by the datapath.

The sw instruction also reads a second register from the register file and writes
it to the data memory. Figure 7.8 shewhe new connections forthis function. The
register is specified in the rt fieldnstr20:16 of the instruction are connected

to the second register file read poA2.

The register value is read onto tRD2 port. It is onnected to the write data
port of the data memory.



The write enable port of the data memdiE, is controlled byMemWrite.
For a sw instructionMemWrite _ 1, to write the data to memoryLUControl
_ 010, to add thebase address and offset; aR&gWrite 0, because nothing
should be written to the register file.

Note that data is still read from the address given to the data memory, but
that thisReadDatas ignored becausBRegWrite_ 0.

Next, consider extending the datapath to handle thaype instructions add,
sub, and, or, and slt. All of the instructions read two regexs from the register
file, perform some ALU operation on them, and write the result back to
third register file. They differ only in the specific ALU operation. Hence, they
can all be handled with the same hardware, using differAhtJControlsignals.
Figure 7.9 shows the enhanced datapath handlingyge instructions. The
register file reads two registers. The ALU performs an operation on these two
registers. In Figure 7.8, the ALU always receive8raB operand from the
sign-extended immediateSignimm). Now, we add a multiplexer to ch&os
SrcBfrom either the register fileRD2 port or Signimm

The multiplexer is controlled by a new signéll.USrc ALUSrcis O for Rtype
instructions to choos&rcBfrom the register file; it is 1 for lw and sw to choose
Signimm THhs principle of enhancing the datapath's capabilities by adding a
multiplexer to choose inputs from several possibilities is extremely useful.
Indeed, we will apply it twice more to complete the handling-afpe
instructions.

WritaData

>

Figura 7.8 Write data to memory for sw instruction



In Figure 7.8, the regqister file always got its write data from the data
memory. However, ype instructions write theALUResultto the register file.
Therefore, we add another multiplexer to choose betlRReadDatand
ALUResultWe call its outpuResult This multiplexer is controlled by another
new signal,MemtoReg MemtoRegis O for Rtype instructions to choosResult
from the ALUResujtit is 1 for lwto choos&keadData We don't care about
the value ofMemtoRegfor sw, because sw does not write to the register file.
Similarly, in Figure 7.8, the register to write was specified by the rt field of
the instruction, Instr20:16 .. However, for Rype instructions, the register is
specified by the rd fieldinstr15:11 .. Thus, we add a third multiplexer to
chooseWriteReg from the appropriate field of the instruction.

The multiplexer is controlled byrRegDst RegDstis 1 for Rtype instructions to
chooseWriteReg from the rd field, Instr15:11 ; it is O for lw to choose the rt
field, Instr20:16. We don't care about the value RégDsfor sw, because sw
does not write to the register file.

Findly, let us extend the datapath to handle beq. beq compares two registers.
If they are equal, it takes the branch by adding the branch offset to the
program counter.

|
4} 'qnlr

bk A J

Figure 7.9 Datapath enhancements for R-type instruction



Recall that the offset is a positive or negative number, dtoréhe imm field of the
instruction, Instr31:26 .The offset indicates the number of instructions to
branch past. Hence, the immediate must be-sigiended and multiplied by
4 to get the new program counter value:

PC_PC_4 Signimm_4Figure 7.10 shows the datapath modifications. The
next PC value for a taken branchPCBranch is computed by shiftingsignimm
left by 2 bits, then adding it t®CPlus4 The left shift by 2 is an easyw

to multiply by 4, because a shift by a constant amount involves just wires.
The two registers are compared by computi@®cA  SrcBusing the ALU. If
ALUResulis 0, as indicated by th&eroflag from the ALU, the registers argual.

We add a multiplexer to choodeC from eitherPCPlus4or PCBranch
PCBranchis selected if the instruction isa branch and Heo flag is
asserted. Hencdranchis 1 for beq and O for other instructis.

For beq, ALUControl 110, so the ALU performs a subtracti&.USrc_0 to
chooseSrcB from the register file RegWrite and MemWrite are 0, because a
branch does not write to the register file or memory. We doné @bout the
values ofRegDsand MemtoRegbecause the register file is not written.

This completes the design of the singjele MIPS processor datapath. We
have illustrated not only the design itself, but also the desigtepsoin

which the state elements are identified and the combinational logic connecting

=' PCBranch

Figure 710 Datapath enhancements far beq instruction

the state elements is systematically added. In the next section, we consider
how to compute the control signals that direct the operatibour datapath.



2.3.2 SingleCycle Control

The control unit computes the control signals based on the opcode and funct
fields of the instruction)nstr31:26 and Instr5:0. Figure 7.11 shows the entire
single cycle MIPS processavith the control unit attached to the datapath.

Most of the control information comes from the opcode, butyRe instructions also
use the funct field to determine the ALU operatiimus, we will simplify our
design by factoringhte control unit into two blocks of combinational logic,
as shown in Figure 7.IPhe main decodercomputes most of the outputs
from the opcode. It also determines abi2 ALUOp signal.

The ALU decoder uses tAdUQ signal in conjunction with the funct field to
computeALUControl The meaning of thALUOpsignal is given in Table 7.1.

{ Control

funit (T )} —MemtcReg |
Table 7.1 ALUOp encoding “E'je”““"”te
EOpcadeE:a— Main ArLaLn;':lc
= H Decode!
ALUOp Meaning i "I RegDst
i RegWrite
00 add H .
: ALUOp.0
H -_‘r
01 subtract i
ALU . :
Functy.— Decoder| — ALL.CUn‘.rolz:ai
10 look at funct field
11 n/a

Figure 712 Gontrol unit
internal structure
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Figure 711 Complete single-cycle MIPS processor

Table 7.2 ALV dacoder truth table

ALUOp Funct ALUConirol

i X 010 {add)

X1 X 110 {subtract)
1X 100000 {add) 010 {add)

1X 100010 {sub) 110 {subtract)

1X 100100 {and) 000 {and)

1X 100101 {or) 001 {or)

1X 101010 (=1t) 111 (set less than]

Tahle 7.3 Main decoder truth table

RegWrite RegDst ALUSre Branch  MemWrite MemtoReg ALUOp
Retype 000000 1 1 i 0 0 0 10
Tw 100011 1 0 1 0 0 1 00
A 101011 0 x 1 0 1 00
Deg 000100 0 x i 1 0 01




Table 7.2 is a truth table for the ALU decoder. Recall that the meanings of
the three ALUCortrol signals were given in Table 5.1. Becatls&Op is

never 11, the truth table can use don't care's X1 and 1Xinstead of 01 and
10 to simplify the logic. WhemALUOpis 00 or 01, the ALU should add or
subtract, respectively. WhenALUOp is 10, the decoder examines the funct
field to determine theALUControl Note that, for the -Rype instructions we
implement, the first two bits of the funct field are always 10, so we may ignore
themto simplify the decoder.

The control signals for each instruction were described as we built the
datapath. Table 7.3 is a truth table for the main decoder that summarizes
the control signals as a function of the@cade. All Rype instructions

use the same main decoder values; they differ only in the ALU decoder
output. Recall that, for instructions that do not write to the register file (e.g.,
sw and beq), thdRegDstand MemtoRegcontrol signals are don't cares (X); the
address and data to the register write port do not matter becRegd\Vrite is
not asserted. The logic for the decoder can be designed using your favorite
techniques for combinatioridogic design.

ExampleSINGLECYCLE PROCESSOR OPERATION

Determine the values of the control signals and the portions of the datapath that are
used when executing an or instruction.

Solution Figure 7.13 illustrates the control signals arddwf of data during
execution of the or instruction. The PC points to the memory location holding
the instruction, and the instruction memory fetches this instruction.

The main flow of data through the register file and ALU epresented with

a dashed blue line. The register file reads the two source operands specified
by Instr25:21 and Instr20:16. SrcBshould come from the second port of the
register file (notSignimn), soALUSramust be 0. or is an-&ype instruction, so
ALUOpis 10, indicating thatALUControl should be determined from the funct
field to be 001Resultis taken from the ALU, 9ddemtoRegs 0. The result is written

to the register file, sRegWriteis 1. The instruedn does not write memory,
soMemWrite _ 0The selection of the destination register is also shown
with a dashed blue line. The destination register is specified in the rd field,
Instr15:11 , so RegDst 1.



The updating of e PC is shown with the dashed gray line. The instruction
isnot a branch, so Branch _0 and, hence, PCSrc is also 0. The PC gets its
next value from PCPIlus4.

Note that data certainly does flow through the nonhighlightesths, but that
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Figure 713 Gontrol signals and data flow while exacuting or instruction

the value of that data is unimportant for this instruction. For example, the
immediate is sigiextended and data is read from memory, but these values
do not influence the next state of the system.



2.3.3 More Instructions

We have considered a limited subset of the full MIPS instruction set. Adding
support for the addi and | instructions illustrates the principle of how to
handle new instructions and also gives us d&fi@ehtly rich instruction set to
write many interesting programs. We will see that supporting some
instructions simply requires enhancing the main decoder, whereas
supporting others also requires more hardware in the gath.

Exampleaddi INSTRUCTION

The add immediate instruction, addi, adds the value in a register to the immediate
and writes the result to another register. The datapath already is capable of
this task. Determine the necessary changes¢ocontroller to support addi.

Solution All we need to do is add a new row to the main decoder truth
table showing the control signal values for addi, as given in Table 7.4. The
result should be written to the register filspRegWrite_ 1. The destination register
is specified in thert field of the instruction, egDst 0. SrcBcomes from

the immediate, sAALUSrc_1. The instruction is not a branch, nor does it
write memory, soBranch_MemWrite _ 0. The result comes from the ALU, not
memory, ssMemtoReg 0. Finally, the ALU should add,AbUOp_ 00.

Tahle 7.4 Main decoder truth table enhanced to support zdd”

Instruction Opcode  RegWrite RegDst ALUSte  Branch  MemWrite MemtoReg ALUOp

Reype 000000 1 1 0 0 0 0 10
i 100011 1 0 1 0 0 1 00
< 101011 0 X 1 0 1 X 00
beg 000100 0 X 0 1 0 X 01

addi 001000 1 0 1 0 0 0 00




Example INSTRUCTION

The jump instruction, j, writes a new value into the PC. The two least
significant bits ofthe PC are always 0, because the PC is word aligned (i.e.,
always a multiple of 4). The next 26 bits are taken from the jump address
field inInstr25:0. The upper four bits are taken from the old value of the PC. The
existingdatapath lacks hardware to compuRC in this fashion. Determine the
necessary changes to both the datapath and controller to handle j.

Solution First, we must add hardware to compute the next PC v&Qg, in the case

of aj instruction and a nitiplexer to select this next PC, as shown in Figure
7.14. The new multiplexer uses the nelwmpcontrol signal.

Now we must add a row to the main decoder truth table for thej instruction
and a column for theJump signal, asshown in Table 7.5. Théump control
signal is 1 for the j instruction and O for all others. j does not write the register file

or memory, soRegWrite_ MemWrite _ 0. Hence, we don't care about the
computation done in the datapathand RegDst ALUSrc Branch_

MemtoReg ALUOp_ X.

Jump

FC Instr

PCJump

e [ 4

EE:GIS :E

Figure 7.14 Single-cycle MIPS datapath enhanced to support the j instruction




2.3.4 Performance Analysis

Each instruction in the singleycle processor takes one clock cycle, so the CPI is 1.
The critical path for the lw instruction is shown in Figure ¥with a heavy
dashed blue line. It starts with the PC loading a new address on the rising edge of
the clock. The instruction memory reads the nextinstruction. The register file
reads SrcA While the register file is reading, thenmediate field is sign
extended and selected at tiA¢.USrcmultiplexer to determineSrcB The ALU
addsSrcAand SrcBto find the effective address. The data memory reads from
this address. Th&lemtoRegnultiplexer selectiReadDataFinaly, Resultmust

setup at the register file before the next rising clock edge, so that it can be properly
written. Hence, the cycle time is

Tc = r;{J::q{_PC * fmem T max[tRFreada rs.s’xr] * Imux

+ rALU + rmem + I-mu}v: + rRfsemp (72)

Tc = rpcq_PC —'—ZImem T IRFread +2:mux Tyt rRJFse'fup (7.3)

Tahle 7.5 Main decoder truth table enhanced to support j

Instruction Opcode RegWrite RegDst ALUSrc Branch MemWrite MemtoReg ALUOp Jump

R-type 000000 1 1 0 0 0 0 10 0
Tw 100011 1 0 1 0 0 1 00 0
sW 101011 0 X 1 0 1 X 00 0
beq 000100 0 X 0 1 0 X 01 0

addi 001000 1 0 1 0 0 00 0
J 000010 0 X X X 0 X XX 1




In most implementation technologies, the ALU, memory, and register file accesses
are substantially lswer than other operations. Therefore, the cycle time
simplifies to

The numerical values of these times will depend on the specific implementation
technology.

Other instructions have shorter critical paths. For exampldyd instructiors

do not need to access data memory. However, we are disciplining
ourselves to synchronous sequential design, so the clock period is constant
and must be long enough to accommodate the slowest instruction.

Example SINGLECYCLE PROCESSHRFORMANCE

Ben Bitdiddle is contemplating building the singtgcle MIPS processor in a 65 nm
CMOS manufacturing process. He has determined that the logic elements have the
delays given in Table 7.6. Help him comgadhe execution time for a

program with 100 billion instructions.

Solution According to Equation 7.3, the cycle time of the singlele processor is

Tcl 30 _2(250) 150 2(25) 200 20 950 ps. We use the subscript"1" to
distinguish it from subsequent processor designs. According to Equation 7.1,
the total execution time i$ 1_ (100 _ 10 9instructions)(1 cycle/instruction)

Table 7.6 Delays of circuit elements

Element Parameter Delay (ps)
register clk-to-Q theq 30
register setup ek 20
multiplexer L 25
ALU TALU 200
memory read mem 250
register file read R Fread 150

register file setup tR Feetup 20
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CHAPTER TRHEE
CODING

-- Adder

library ieee;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all;

entity adder is
port(a: in unsigned(31 downto 0);
b: in unsigned(31 downto 0);
c: out unsigned(31 downto 0));
end adder;

architecture arc_adder of adder is
begin

c<=a+ b;

end arc_adder;

-- right _shift
library ieee;
use ieee.std_logic_1164.all;

entity r_shift is
port(a : in std_logic_vector(31 downto 0);
sel : in integer range 0 to 31;
¢ : out std_logic_vector(31 downto 0));
end r_shift;

architecture arc_r_shift of r_shift is
sub type vector is std_logic_vector(31 downto 0);
type matrix is array(31 downto 0) of vector;
signal row : matrix;
begin
row(0)<=a;
g_1:foriin 1 to 31 generate
row(i)<="0" & row(i - 1)(31 downto 1);
end generate;
c<=row(sel);
end arc_r_shift;

- - arithmatic  _r ight_shift
library ieee;
use ieee.std_logic_1164.all;

entity a_r_shift is
port(a : in std_logic_vector(31 downto 0);
sel : in integer range 0 to 31;



c : out std_logic_vector(31 downto 0));
end a_r_shift;

architecture arc_a_r_shift of a_r_shift is
subtype vector is std_logic_vector(31 downto 0);
type matrix is array(31 downto 0) of vector;
signal row : matrix;
signal s_1 : std_logic;
begin

row(0)<=a;

g_1:foriin 1to 31 generate

row()<=a(31 ) &row(i -1)(31 downto 1);
end generate;

c<=row(sel);

end arc_a_r_shift;

-- arithmatic_left_shift
library ieee;
use ieee.std_logic_1164.all;

entity I_shift is
port(a : in std_logic_vector(31 downto 0);

sel : ininteger range 0 to 31;
c : out std_logic_vector(31 downto 0));
end |_shift;

architecture arc_|_shift of |_shift is
subtype vector is std_logic_vector(31 downto 0);
type matrix is array(31 downto 0) of vector;
signal row : matrix;
begin

row(0)<=a;

g_1:fori in 1 to 31 generate

row(i)<=row(i - 1)(30 downto 0) & '0;
end generate;

c<=row(sel);
end arc_|_shift;

-- arithmatic_  shift
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity arith_sh is

port(a_1: in unsigned(31 downto 0);
b_1:in unsigned(31 downto 0);
sel: in unsigned(2 downto 0);
c: out unsigned(31 downto 0);
negative: out std_logic;
zero: out std_logic;
over_flow: out std _logic;



carry:out std_logic;
borrow: out std_logic);
end arith_sh;

architecture arc_arith_sh of arith_sh is
signals_1,s 2,s 3,s 4,a,b: std_logic_vector(31 downto 0);
signal sel_sh: integer range 0 to 31;
begin
a<=conv_std_logic_vector(a_ 1,32);
b<=conv_std_logic_vector(b_1,32);
sel_sh<=conv_integer(b_1(4 downto 0));

ul: entity work.l_shift(arc_|_shift) port
map(a=>a,sel=>sel_sh,c=>s_2);

u2: entity work.r_shift(arc_r_shift) port
map(a=>a,sel=>sel_sh,c=>s_3);

u3: entity work.a_r_s hift(arc_a_r_shift) port
map(a=>a,sel=>sel_sh,c=>s_4);

with sel select

s_l<=a+b when "000",
a+((not b)+1) when "001",
s_2 when "010",
s_3 when "011",
s_4 when "100",
(others=>'0") when others;

zero<='1'when s_1=conv_std | ogic_vector(0,32) else

O ’
negative<=s_1(31);

over_flow<=(((not a(31)) and (not b(31)) and s_1(31)) or (a(31) and
b(31) and (not s_1(31))))

or (((not a(31)) and b(31) and s_1(31)) or (a(31) and (not b(31)) and
(nots_1(31)))); --  with overflow e nable

carry<=((not a(31)) and (not b(31)) and s_1(31)) or (a(31) and b(31)
and (not s_1(31))); -- with add enable

borrow<=((not a(31)) and (not b(31)) and s_1(31)) or (a(31) and (not
b(31)) and s_1(31)); -- with sub enable

c<=unsigned(s _1);

end arc_arith_sh;

-- logic

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity logic is
port(a_1 : in unsigned(31 downto 0);
b_1:in unsigned(31 downto 0);
sel : in unsigned(2 downto 0);
¢ : out unsigned(31 downto 0));



end logic;

architecture arc_logic of logic is
signal a,b,s_1 : std_logic_vector(31 downto 0);
begin

a<=conv_std_logic_vector(a_1,32);
b<=conv_std_logic_vector(b_1,32) ;

with sel select

s_1<=aand b when "000",
a or b when "001",
a xor b when "010",
a nand b when "011",
a nor b when "100",
a xnor b when "101",
(others=>'0") when others;

c<=unsigned(s_1);
end arc_logic;

-- ALU

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity alu is

port(a: unsigned(31 downto 0);
b: unsigned(31 downto 0);
sel: in unsigned(3 downto 0);
c: out unsigned(3 1 downto 0);
negative: out std_logic;
zero: out std_logic;
over_flow: out std_logic;
carry:out std_logic;
borrow: out std_logic);

end alu;

architecture arc_alu of alu is
signal s_1,s_2:unsigned(31 downto 0);
begin

ul: entity work.arith_sh(arc_arith_sh) port map( a 1=>a,b 1=>b,sel=>
sel(2 downto
0),c=>s_1,negative=>negative,zero=>zero,over_flow=>over_flow,carry=>c
arry,
borrow=>borrow);

u2: entity work.logic(arc_logic) port map(a_1=>a,b_1=>b,sel=>sel(2
downto 0),c=>s _2);

with sel(3) select
c<=s_1 when'0',
s_2 when others;

end arc_alu;



-- Instruction memaory
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity rom is

port (instr_addr : in unsigned(7 downto 0);
instr_out : out unsigned(31 downto 0)
);

end rom;

architecture arc_rom of rom is

type mem_type is array(0 to 255) of unsigned(7 downto 0);
signal mem : mem_type;

signal s_1,s_2,s_3: unsigned(7 downto 0);

begin

Program

mem(3)<=x"82";mem(2)<=x"00";mem(1)<=x"20";mem(0)<=x"05";
ADD  simm=5
mem(7)<=x"84";mem(6)<=x"20";mem(5)<=x"20";mem(4)<=x"05";
SUB simm= -5
mem(11)<=x"86";mem(10)<=x"80";mem(9)<=x"40";mem(8)<=x"02";
ADDCC
mem(15)<=x"02";mem(14)<=x"80";mem(13)<=x"00";mem(12)<=x"04",
BE to 28
mem(19)<=x"06";mem(18)<=x"00";mem(17)<=x"40";mem(16)<=x"02";
add
mem(23)<=x"08";mem(22)<=x"00";mem(21)<=x"40";mem(20)<=x"02";
sub

mem(27)<=x"00";mem(26)<=x"00"; mem(25)<=x"00";mem(24)<=x"02";
branch
mem(31)<=x"92";mem(30)<=x"00";mem(29)<=x"20";mem(28)<=x"f1";
ADD 28
mem(35)<=x"81";mem(34)<=x"e0";mem(33)<=x"20";mem(32)<=x"01";
SAVE
mem(39)<=x"f2";mem(38)<=x"a0";mem(37)<=x"00";mem(36)<=x "01";
STA
mem(43)<=x"40";mem(42)<=x"00";mem(41)<=x"00";mem(40)<=x"09";
CALL 36
mem(47)<=x"40";mem(46)<=x"00";mem(45)<=x"00";mem(44)<=x"09";



............... interrupt routine

mem(G1)<=x"cc";mem(50)<= x"80";mem(49)<= x"00";mem(48)<= x"00";
LDA rd=6

mem(55)<=x"b2";mem(54)<= x"26";mem(53)<= x"60";mem(52)<= x"01";
SUB i=1 rd,rs=25 simm=1

mem(59)<=x"cc";mem(58)<= x"a0";mem(57)<= x"00";mem(56)<= x"01";
STA

menf63)<=x"8e";mem(62)<= x"00";mem(61)<= x"20";mem(60)<= x"Of";
ADD i=1 rd=7 simm=15

mem(67)<=x"8e";mem(66)<= x"al";mem(65)<= x"e0";mem(64)<= x"01";
SUBCC i=1 rs=7 rd=7

mem(71)<=x"12";mem(70)<= x"bf";mem(69)<= x"ff";mem(68)<= x"ff";
BNE to 60

mem(75)<=x"8c";mem(74)<= x"al";mem(73)<= x"a0";mem(72)<= x"01";
subCC i=1 rs=6 rd=6

mem(79)<=x"02";mem(78)<= x"bf";mem(77)<= x"ff";mem(76)<= x"f6";
BE to 36

mem(83)<=x"40";mem(82)<= x"00";mem(81)<= x"00";mem(80)<= x"0e";
CALL

s_Il<=instr_addr+1;
s_2<=instr_addr+2;
s_3<=instr_addr+3;

instr_out(7 downto 0) <= mem(conv_integer(instr_addr)); --

instr_out(15 downto 8) <= mem(conv_integer(s_1)); -- read
instr_ out(23 downto 16) <= mem(conv_integer(s_2)); -- read
instr_out(31 downto 24) <= mem(conv_integer(s_3)); -- read
end arc_rom;

-- Prog counter
library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity prog_count is
port(clk: in st d_logic;
reset:in std_logic;
en_pc:in std_logic;
pc_in: in unsigned(31 downto 0);
pc_out: out unsigned(31 downto 0));
end prog_count;

architecture arc_prog_count of prog_count is
begin

process(clk)
begin
iflen_ pc="1") then
if(reset="1") then
pc_out<=x"00000000";
elsif(clk'event and clk="1") then
pc_out<=pc_in;
end if;
end if;

read



end process;

end arc_prog_count;

-- shift extend

library ieee;

use ieee.std_logic_1164.al I;
use ieee.std_logic_arith.all;

entity shift_extend is
port(a: in unsigned(21 downto 0);
c: out unsigned(31 downto 0));
end shift_extend;

architecture arc_shift_extend of shift_extend is
begin

€<=("11111111"&a&"00") when a(21)='1" else
("00000000"&a&"00");
end arc_shift_extend,;

-- sign extend
library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity sign_extend is
port(a: in unsigned(12 downto 0);
c: out unsigned(31 downto 0));
end sign_extend;

archite cture arc_sign_extend of sign_extend is
begin

c<=("1111111111111111111"&a) when a(12)="1" else
("0000000000000000000"&a);

end arc_sign_extend;

-- zero extend
library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity  zero_e xtend is
port(a: in unsigned(4 downto 0);
c: out unsigned(31 downto 0));
end zero_extend ;

architecture arc_ zero_extend of zero_extend
begin

c<=conv_unsigned(0,27)&a;

end zero_extend ;



-- mux 2X1

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity mux_2 is
port(a: in unsigned(31 downto 0);
b: in unsigned(31 downto 0);
sel: in std_logic;
c: out unsigned(31 downto 0));
end mux_2;

architecture arc_mux_2 of mux_2 is
begin

c<=a when sel="0' else
b;

end arc_mux_2;

-- mux 4X1

library ieee;

use ieee.std_logic_arith.all;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mux_4 is
port(a: in unsigned(31 downto 0);
b: in unsigned(31 downto 0);

d: in unsign ed(31 downto 0);

e: in unsigned(31 downto 0);

sel: in unsigned(1 downto 0);

c: out unsigned(31 downto 0));
end mux_4;

architecture arc_mux_4 of mux_4 is
signal sel_int: integer range 0 to 3;
begin
sel_int<=conv_integer(sel);
c<=a when sel_int=0 else
b when sel_int=1 else
d when sel_int=2 else
€,

end arc_mux_4;



-- mux 8X1

library ieee;

use ieee.std_logic_arith.all;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mux_8 is
port(a: in unsigned(31 downto 0);
b: in unsigned(31 downto 0);
d: in unsigned(31 downto 0);
e: in unsigned(31 downto 0);
f: in unsigned(31 downto 0);
g: in unsigned(31 downto 0);
h: in unsigned(31 downto 0);
k: in unsi gned(31 downto 0);
sel: in unsigned(2 downto 0);
c: out unsigned(31 downto 0));
end mux_8;

architecture arc_mux_8 of mux_8 is
signal sel_int: integer range 0 to 7;
begin
sel_int<=conv_integer(sel);
c<=a when sel_int=0 else
b when se |_int=1 else
d when sel_int=2 else
e when sel_int=3 else
f when sel_int=4 else
g when sel_int=5 else
h when sel_int=6 else
k;

end arc_mux_8;

-- adder 4

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith all;

entity add_4 is
port(add_in: in unsigned(31 downto 0);
add_out: out unsigned(31 downto 0));
end add_4;

architecture arc_add_4 of add_4 is
begin

add_out<=add_in + 4;

end arc_add_4;



-- reg_8

library ieee;

use ieee.std_logic 1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity reg_8 is
port(clk: in std_logic;

add_1: in unsigned(4 downto 0);
add_2: in unsigned(4 downto 0);
add_3: in unsigned(4 downto 0);
data_in: in unsi gned(31 downto 0);
write_en: in std_logic;
data_1: out unsigned(31 downto 0);
data_2: out unsigned(31 downto 0);
data_3: out unsigned(31 downto 0));

end reg_8;

architecture arc_reg_8 of reg_8 is

subtype vector is unsigned(31 d ownto 0);
type matrix is array(0 to 7) of vector;

signal reg: matrix :=(others=>(others=>'0"));

signal add_11: unsigned(2 downto 0);

signal add_22: unsigned(2 downto 0);

signal add_33: unsigned(2 downto 0);

signal s_1,s_2: std_logic;

signal s_3: integer ra nge0to7;

begin

add_11<=add_1(2 downto 0);
add_22<=add_2(2 downto 0);
add_33<=add_3(2 downto 0);

s_1<= not(add_3(4) or add_3(3));
s_2<=s_1 and write_en;
s_3<=conv_integer(add_33);

data_1<=reg(conv_integer(add_11));
data_2<=reg(conv_in teger(add_22));
data_3<=reg(conv_integer(add_33));

process(clk,s_2)
begin
if(clk'event and clk="1") then
if(s_2="1") then
if(s_3=0) then
reg(s_3)<=x"00000000";
else reg(s_3)<=data_in;
end if;
end if;
end if;
end process;

end arc_reg_8;



-- reg_32

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity reg_32 is
port(clk: in std_logic;

add_1: in unsigned( 4 downto 0);
add_2: in unsigned(4 downto 0);
add_3: in unsigned(4 downto 0);
data_in: in unsigned(31 downto 0);
write_en: in std_logic;
current_window: in std_logic;
data_1: out unsigned(31 downto 0);
data_2 : out unsigned(31 downto 0);
data_3: out unsigned(31 downto 0));

end reg_32;

architecture arc_reg_32 of reg_32 is

subtype vector is unsigned(31 downto 0);

type matrix is array(0 to 31) of vector;

signal reg: matrix :=(others=>(others=>'0"));
signa |add_11,add_12: unsigned(4 downto 0);
signal add_21,add_22: unsigned(4 downto 0);
signal add_31,add_32: unsigned(4 downto 0);
signal s_1,s_2: std_logic;

signal s_3: integer range 0 to 31;

begin

s_l<=add_3(4) or add_3(3);
s_2<=s_1 and write_en;
s_3<=conv_integer(add_32);

add_l1l<=add 1 - 8;
add_12<=add_11 when current_window="1" else
add_11 + 16;

add_2l1<=add 2 - 8;
add_22<=add_21 when current_window="'1" else
add_21 + 16;

add_3l1<=add 3 - §;
add_32<=add_31 when current _window="1" else
add_31 + 16;

data_1<=reg(conv_integer(add_12));
data_2<=reg(conv_integer(add_22));
data_3<=reg(conv_integer(add_32));

process(clk,s_2)
begin
if(clk'event and clk="1") then
if(s_2="1") then
r eg(s_3)<=data_in;
end if;
end if;
end process;
end arc_reg_32;



-- register file

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity register_file is
port(clk: in std_logic;

addr_1: in unsigned(4 downto 0);
addr_2: in unsigned(4 downto 0);
addr_3: in unsigned(4 downto 0);
data_in: in unsigned(31 downto 0);
write_en: in std_logic;
current_window: in std_logic;
data_1: out unsign ed(31 downto 0);
data_2: out unsigned(31 downto 0);
data_3: out unsigned(31 downto 0));

end register_file ;

architecture arc_ register_file of register_file is
signal s_1,s_2,s 3: unsigned(31 downto 0);

signal s_4,s_5,s_6: unsigned(31 downto 0);

signal s_7,s_8,s_9: std_logic;

begin

ul: entity work.reg_32(arc_reg_32) port
map(clk=>clk,add_1=>addr_1,add_2=>addr_2,add_3=>addr_3,data_in=>data_
in,
write_en=>write_en,current_window=>current_window,data_1=>s 1 data 2=
>s 2,data_3=>s_3);

u2: e ntity work.reg_8(arc_reg_8) port
map(clk=>clk,add_1=>addr_1,add_2=>addr_2,add_3=>addr_3,data_in=>data_
in,
write_en=>write_en,data_1=>s_4,data_2=>s_5,data_3=>s_6);

S_7<=addr_1(4) or addr_1(3);
S_8<=addr_2(4) or addr_2(3);
S_9<=addr_3(4) or addr_3(3);

data_1<=s 1whens_7='1"else
s_4whens 7='0"

data_2<=s 2 whens_8='1"else
s_5whens_8='0"

data_3<=s 3 whens_9='1"else
s_6 when s 9='0"

end arc_ register_file ;



-- status reglster
library ieee;

use ieee.std logic_1164.all;
use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity status_register is
port(clk: in std_logic;
reset: in std_logic;
en_icc: in std_logic;
negative: in std_logic;
zero: in std_logic;
over_flow: in std_logic;
carry:in std_logic;
borrow: in std_logic;
addr_1: in unsigned(1 downto 0);
data_in: in unsigned(31 downto 0);
write_en: in std_logic;
trap_type: in unsigned(7 downto 0);
data_ outtrap_register,window_invalid: out unsigned(31 downto
0);
current_window: out std_logic;
flags: out unsigned(3 downto 0));

end status_register;

architecture arc_status_register of status_register is
subtype vector is unsigned(31 downto O );
type matrix is array(0 to 3) of vector;

signal reg: matrix :=(others=>(others=>'0");

begin

data_out<=reg(conv_integer(addr_1));
window_invalid<=reg(1);

trap_register<=reg(2);

current_window<=reg(0)(0);

flags(3 downto 0)<=reg(0)(23 downto 20 );

process(clk,reset,negative,zero,over_flow,carry,borrow,trap_type,data
_in,en_icc)
begin

if(clk'event and clk="1") then
if(reset="1") then
reg(0)<=x"00000001";
reg(1)(1 downto 0)<="11";
reg(1)(31 downto 2)<=x"000 0000"&"00";
reg(2)(3 downto 0)<=x"0";
reg(2)(31 downto 12)<=x"00000";
else
if(write_en="1") then
case addr_1is
when "00"=>
reg(0)(13 downto 0)<=data_in(13 downto 0);
reg(0)(19 downto 14)<="000000";
reg(0)(31 downto 24)<=x"3a";

when "01"=>
reg(1)(1 downto 0)<="11";
reg(1)(31 downto 2)<=x"0000000"&"00";



when "10"=>
reg(2)(3 downto 0)<="0000";
reg(2)(31 downto 12)<=x" 00000";

when "11"=>
reg(3)<=data_in;

when others=>null;
end case;

end if;
end if;

end if;

if(en_icc="1")then
reg(0)(20)<=(carry or borrow);
reg(0)(21)<=over_flow ;
reg(0)(22)<=zero ;
reg(0)(23)<=negative ;
end if;
reg(2)(11 downto 4)<=trap_type;

end process;

end arc_status_register;

-- window trap

library ieee;

use ieee.std_logic _1164.all;
use ieee.std_logic_arith.all;

entity window_trap is
port(a: in unsigned(4 downto 0);
b: in unsigned(31 downto 0);
en_trap: out std_logic);
end window_trap;
architecture arc_window_trap of window_trap is
begin
en_trap<=n ot b(conv_integer(a));

end arc_window_trap;



-- setO

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity setO is
port(clk: in std_logic;

address: in unsigned(31 downto 0);
data_in: in unsigned(31 downto 0);
write_en: in std_logic;
valid: in std_logic;
darity: in std_logic;
data_out; out unsigned(31 downto 0);
hit: out std_logic;
least: out std_logic;
d 0,d 1:outs td_logic;
tag0: out unsigned(24 downto 0);
tagl: out unsigned(24 downto 0));

end set0;

architecture arc_setO of set0 is

type mem_type is array(0 to 3) of unsigned(31 downto 0);
signal block_0 : mem_type;

signal block_1 : mem_type;

signaltag _0: unsigned(24 downto 0);

signal tag_1 : unsigned(24 downto 0);

signal address_tag: unsigned(24 downto 0);

signal equal_0,equal_1,hit_0,hit_1,s,least_disabled: std_logic:='0";
signal valid_0,valid_1,least_used: std_logic:='0";

signal data_0,data_1: unsig ned(31 downto 0);
signal block_offset: unsigned(1 downto 0);

signal set_sel: unsigned(2 downto 0);

begin

address_tag<=address(31 downto 7);
block_offset<=address(3 downto 2);
set_sel<=address(6 downto 4);

s<= (not (set_sel(0))) and (not (set_se I(1))) and (not
(set_sel(2)));

equal_0<='1'when address_tag=tag_0 else
0"

equal_1<="1'when address_tag=tag_1 else
0"

hit_O<=equal_0 and valid_0;
hit_1<=equal_1 and valid_1,
hit<=hit_0 or hit 1

least_used<='1'when (s='1' and hit_1="1" and darity="1") else
'0' when (s="1" and hit_0="1" and darity="1") else
least_used;



mux_4_0:entity work.mux_4(arc_mux_4) port

map(a=>block_0(0),b=>block _ 0(1),d=>block_0(2) ,e=>block_0(3) ,sel=>bloc
k_offset,

c=>data_0);

mux_4_1:en tity work.mux_4(arc_mux_4) port
map(a=>block 1(0),b=>block 1(1),d=>block 1(2),e=>block 1(3),sel=>bloc
k_offset,
c=>data_1);

mux_2_0:entity work.mux_2(arc_mux_2) port
map(a=>data_0,b=>data_1,s el=>hit_1,c=>data_out);

process(clk,write_en,address_tag,block offset,data _in,hit_0,darity)
begin
if(clk'event and clk='1") then
if(s='1")then
if(write_en="1")then
if(valid_0="0" or least_disabled="1" or hit_0="1"then
block_O(conv_integer(block_offset))<=data_in;
tag_O<=address_tag;
valid_O<=valid;
d_O<=darity;
else
block_1(conv_integer(block_offset))<=data_in;
tag_l<=address_tag;
valid_1<=valid;
d_1<=darity;

end if;
end if;
end if;
end if;
end process;

least_disabled<=least_used and (not darity);

tagO<=tag_O0;
tagl<=tag _1,;
least<=least_used;

end arc_setO;

-- setl

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity setl is
port(clk: in std_logic;

address: in unsigned(31 downto 0);
data_in: in unsigned(31 downto 0);
write_en: in std_logic;
valid: in std_logic;
darity: in std_logic;
data_out: out unsigned(31 downto 0);
hit: out std_logic;
least: out std_logic;






