

FEESparc

Microprocessor

Graduation Project 2013
Faculty of Electronic Engineering
Menufyia University
Dr.Gamal Mahrous

Contents

1 ARCHITECTURE éééééééééé.éé..éé

1.1introduction ééééééééééééééééé..é.é.

 1.2 features ééééééééééééé.éééééé...é

 1.3 glossary éééééééééééé..ééé.....................

 1.4 registers ééééééééééééé...ééééééé.

 1.5 instructions éééééééééééé..é.éééééé

2 Microarchitecture ééééééééééééé........

 2.1 introduction éééééééééééééééé..é..é..

 2.1.1architectural states and instruction set éééé....................

 2.1.2 design process éééééééééééééééééé

 2.1.3 mips microarchitecture ééééééééééééé....é.

 2.2 performance analysis éééééééééééééééé.

 2.3 single cycle processor éééééééééééééééé

 2.3.1 single cycle data path éééééééééééééé

 2.3.2 single cycle controlééééééééééééé.......

 2.3.3 more instructions ééééééééééééééé..

 2.3.4 performance analysis éééééé...ééééééé

3 Coding éééééééééééééé.ééééé

4 References é éééééééééééééé......

Overview

This book is a brief description of the concept an
implementation of the graduation project FEESparc
Microprocessor, designed by senior students in the Faculty of
Electronic Engineering at Menoufyia University. This
microprocessor was implemented on FPGA kit.

The project team is :
-Ahmed Ghoneim Elaiat
Department of Industrial Electronics and Control

-Salahuddin Ashraf Abdulrahim
Department of Computer Science and Engineering

-Hassan Adel Eljezeiry
Department of Computer Science and Engineering

Acknowledgment

Many thanks to all who helped to let this project come to light,
Dr.Gamal Attiya, Dr.Amr Wassal, and a special thanks to the
authors of the great book "Digital Design and Computer
Architecture"; Dr.David Harris and Dr.Sarah Harris

CHAPTER ONE

ARCHITECTURE

1.1 Introduction
FEESPARCis a 32-bit single cycle Microprocessor which is based on SPARC
Architecture.
 SPARC stands for Scalable Processor ARChitecture which is designed by Berkeley
University.

 SPARC derived from Reduced Instruction Set Computer "RISC".

1.2 Features

Á 32-bit address space.
Á Few and simple instruction formats Ĳ All instructions are 32 bits wide,

and are aligned on 32-bit boundaries in memory
Á There are only three basic instruction formats, and they feature uniform

placement of opcode and register address fields. Only load and store
instructions access memory and I/O.

Á Few addressing modes Ĳ A memory address is given by either Ķregister +
registerķ or Ķregister + immediate.ķ

Á Triadic register addressesĲ Most instructions operate on two register
operands (or one register and a constant), and place the result in a third
register.

Á A large Ķwindowedķ register file Ĳ At any one instant, a program sees 8
global integer registers plus a 24- register window into a larger register
file. The windowed registers can be described as a cache of procedure
arguments, local values, and return addresses.

1.3Glossary
 The following paragraphs describe some of the most important words and
acronyms used :

Current window
The block of 24 r registers to which the Current Window Pointer points.

Ignored
Used to describe an instruction field, the contents of which are arbitrary, and which
has no effect on the execution of the instruction. The contents of an Ķignoredķ field
will continue to be ignored in future versions of the architecture. See also reserved
and unused.Implementation Hardware or software that conforms to all the
specifications of an ISA.

Instruction Set Architecture (ISA)
An ISA defines instructions, registers, instruction and data memory, the effect of
executed instructions on the registers and memory, and an algorithm for controlling
instruction execution. An ISA does not define clock cycle times, cycles per
instruction, data paths, etc.

Next Program Counter (nPC)
Contains the address of the instruction to be executed next (if a trap does not occur).

Privileged
An instruction (or register) that can only be executed (or accessed) when the
processor is in supervisor mode (when PSR[S]=1).

 Program Counter (PC)
Contains the address of the instruction currently being executed by the IU.

rs1, rs2, rd
Specify the register operands of an instruction. rs1 and rs2 are the source registers;
rd is the destination register
.
Reserved
Used to describe an instruction or register field which is reserved for definition by
future versions of the architecture. A reserved field should only be written to zero by
software. A reserved register field should read as zero in hardware; software
intended to run on future versions of SPARC should not assume that the field will
read as zero.

Supervisor Mode
A processor state that is active when the S bit of the PSR is set (PSR[S] = 1).

Trap
A vectored transfer of control to supervisor software through a table whose address
is given by a privileged IU register (the Trap Base Register (TBR)).
Unused
Used to describe an instruction field or register field that is not currently defined by
the architecture. When read by software, the value of an unused register field is
undefined. However, since an unused field could be defined by a future version of

the architecture, an unused field should only be written to zero by software.

User Mode
 A processor state that is active when the S bit of the PSR is not set (when PSR[S] = 0).

User Application Program
A program executed with the processor in user mode. Also simply called
Ķapplication programķ.

1.4 Registers
There are two types of registers: general-purpose or Ķworkingķ data registers and
control/status registers. The IUĴs ķInteger unitķ general-purpose registers are called r
registers.

1.4.1 IU r Registers

Á The IU contains 40 general-purpose 32-bit r registers.
Á They are partitioned into 8 global registers, plus 2- register sets. A

register set is further partitioned into 8 in registers and 8 local
registers.

1.4.1.1Windowed r Registers
At a given time, an instruction can access the 8 globals and a 24- register window
into the r registers. A register window comprises the 8 in and 8 local registers ofa
particular register set, together with the 8 in registers of an adjacent register
set,which are addressable from the current window as out registers.

 The number of windows or register sets, NWINDOWS, ranges from 2 to 32,
depending on the implementation. The total number of r registers in a given
implementation is 8 (for the globals
Thus, the minimum number of r registers is 40 (2 sets), and the maximum number
is 520 (32 sets).

 The current window into the r registers is given by the current window pointer
(CWP), a 5-bit counter field in the Processor State Register (PSR). The CWP is
incremented by a RESTORE (or RETT) instruction and decremented by a SAVE
instruction or a trap. Window overflow and underflow are detected via the window
invalid mask (WIM) register, which is controlled by supervisor software.

1.4.1.2Overlapping of window

Each window shares its ins and outs with the two adjacent windows. The outs of the
ins of the current window, and the outs in

the current window are the ins locals are unique to each
window.

 An r register with address o o ister
as (o + 16) does after the CWP is decremented by 1 (modulo NWINDOWS).Likewise,
a register with address i i
address (i

Since CWP arithmetic is performed modulo NWINDOWS, the highest numbered
implemented window overlaps with window 0. The outs of window 0 are the ins of

1.4.2IU Control/Status Registers
 The 32-bit IU control/status registers include the Processor State Register (PSR), the
Window Invalid Mask register (WIM), the Trap Base Register (TBR), the program
counters (PC), and optional, implementation-dependent Ancillary State Registers
(ASRs).

1.4.2.1Processor State Register (PSR)
 The 32-bit PSR contains various fields that control the processor and hold status
information. It can be modified by the SAVE, RESTORE, Ticc, and RETT instructions,
and by all instructions that modify the condition codes. The privileged RDPSR and
WRPSR instructions read and write the PSR directly.

The PSR provides the following fields:

PSR_implementation (impl)
Bits 31 through 28 are hardwired to identify an implementation or class of
implementations of the architecture. The hardware should not change
this field inresponse to a WRPSR instruction. Together, the PSR.impl and PSR.ver
fieldsdefine a unique implementation or class of implementations of the
architecture.

PSR_version (ver)
Bits 27 through 24 are implementation-dependent. The ver field is either hardwired
to identify one or more particular implementations or is a readable and writable
state field whose properties are implementation-dependent

PSR_integer_cond_codes (icc)
Bits 23 through 20 are the IUĴs condition codes. These bits are modified by the
arithmetic and logical instructions whose names end with the letters cc (e.g.,ANDcc),
and by the WRPSR instruction. The Bicc and Ticc instructions cause a transfer of
control based on the value of these bits, which are defined as follows:

PSR_negative (n)
Bit 23 indicates whether the 32-bit 2Ĵs complement ALU result was negative for the
last instruction that modified the icc field. 1 = negative, 0 = not negative.

PSR_zero (z)
 Bit 22 indicates whether the 32-bit ALU result was zero for the last instruction that
modified the icc field. 1 = zero, 0 = nonzero.

PSR_overflow (v)
 Bit 21 indicates whether the ALU result was within the range of (was representable
in) 32-bit 2Ĵs complement notation for the last instruction that modified the icc
field. 1 = overflow, 0 = no overflow.

PSR_carry (c)
Bit 20 indicates whether a 2Ĵs complement carry out (or borrow) occurred for the
last instruction that modified the icc field. Carry is set on addition if there is a carry
out of bit 31. Carry is set on subtraction if there is borrow into bit 31. 1 =carry, 0 =
no carry.

PSR_reserved
 Bits 19 through 14 are reserved. When read by a RDPSR instruction, these bits
deliver zeros. For future compatibility, supervisor software should only issue WRPSR
instructions with zero values in this field.

PSR_enable_coprocessor (EC)
Bit 13 determines whether the implementation-dependent coprocessor is enabled.If
disabled, a coprocessor instruction will trap. 1 = enabled, 0 = disabled. If an
implementation does not support a coprocessor in hardware, PSR.EC should always
read as 0 and writes to it should be ignored.

PSR_enable_floating-point (EF)
Bit 12 determines whether the FPU is enabled. If disabled, a floating-point
instruction will trap. 1 = enabled, 0 = disabled. If an implementation does
not support a hardware FPU, PSR.EF should always read as 0 and writes to it should
be ignored.

PSR_proc_interrupt_level (PIL)
Bits 11 (the most significant bit) through 8 (the least significant bit) identify the
interrupt level above which the processor will accept an interrupt.

PSR_supervisor (S)
Bit 7 determines whether the processor is in supervisor or user mode. 1 = supervisor
mode, 0 = user mode.

PSR_previous_supervisor (PS)
Bit 6 contains the value of the S bit at the time of the most recent trap.

PSR_enable_traps (ET)
Bit 5 determines whether traps are enabled. A trap automatically resets ET to 0.
When ET=0, an interrupt request is ignored and an exception trap causes the IUto
halt execution, which typically results in a reset trap that resumes execution at
address 0. 1 = traps enabled, 0 = traps disabled.

PSR_current_window_pointer (CWP)
Bits 4 (the MSB) through 0 (the LSB) comprise the current window pointer, a
counter that identifies the current window into the r registers. The hardware
decrements the CWP on traps and SAVE instructions, and increments it on RESTORE
and RETT instructions (modulo NWINDOWS).

1.4.2.2 Window Invalid Mask Register (WIM)
 The Window Invalid Mask register (WIM) is controlled by supervisor software and
is used by hardware to determine whether a window overflow or underflow trap is
to be generated by a SAVE, RESTORE, or RETT instruction

There is an active state bit in the WIM for each register set or window in an
implementation. WIM[n] corresponds to the register set addressed when CWP =n.

 When a SAVE, RESTORE, or RETT instruction executes, the current value of the
CWP is compared against the WIM. If the SAVE, RESTORE, or RETT instruction
would cause the CWP to point to an Ķinvalidķ register set, that is, one whose
corresponding WIM bit equals 1 (WIM[CWP] = 1), a window_overflow or
window_underflow trap is caused.

 The WIM can be read by the privileged RDWIM instruction and written by the
WRWIM instruction. Bits corresponding to unimplemented windows read as zeroes
and values written to unimplemented bits are unused. A WRWIM with all bits set to
1, followed by a RDWIM, yields a bit vector in which the implemented windows
(and only the implemented windows) are indicated by 1Ĵs.

The WIM allows for implementations with up to 32 windows.

1.4.2.3 Trap Base Register (TBR)
The Trap Base Register (TBR) contains three fields that together equal the address to
which control is transferred when a trap occurs.

The TBR provides the following fields:

TBR_trap_base_address (TBA)
 Bits 31 through 12 are the trap base address, which is established by supervisor
software. It contains the most- significant 20 bits of the trap table address. The TBA
field is written by the WRTBR instruction.

TBR_trap_type (tt)
 Bits 11 through 4 comprise the trap type (tt) field. This 8-bit field is written by the
hardware when a trap occurs, and retains its value until the next trap. It provides an
offset into the trap table. The WRTBR instruction does not affect the tt field.

TBR_zero (0)
 Bits 3 through 0 are zeroes. The WRTBR instruction does not affect this field.For
future compatibility, supervisor software should only issue a WRTBR instruction
with a zero value in this field.

1.4.2.4Ancillary State Registers (ASR)
SPARC provides for up to 31 Ancillary State Registers (ASRĴs), numbered from 1 to
31.
 ASRĴs numbered 1-15 are reserved for future use by the architecture and should
not be referenced by software.
 ASRĴs numbered 16-31 are available for implementation-dependent uses, such as
timers, counters, diagnostic registers, self- test registers, and trap-control registers.A
particular IU may choose to implement from zero to sixteen of theseASRĴs. The
semantics of accessing any of these ASRĴs is implementationdependent.Whether a
particular Ancillary State Register is privileged or not is implementation-dependent.
 An ASR is read and written with the RDASR and WRASR instructions. A read/write
ASR instruction is privileged if the accessed register is privileged.

1.5Instructions
 Instructions are accessed by the processor from memory and are executed,
annulled, or trapped. Instructions are encoded in three 32-bit formats and can be
partitioned into four general categories. There are 72 basic instruction operations.

Instructions fall into four basic categories:
1) Load/store

2) Arithmetic/logical/shift

3) Control transfer

4) Read/write control register

1.5.1 Instruction Formats
 Instructions are encoded in three major 32-bit formats.

1.5.2 Instruction Fields
 The instruction fields are interpreted as follows:

op and op2
These 2- and 3-bit fields encode the 3 major formats and the format 2 instructions

op Encoding (All Formats)
Format op Instructions
1 1 CALL

2 0 Bicc, SETHI

3 3 memory instructions

3 2 arithmetic, logical, shift, and
remaining

op2 Encoding (Format 2)
op2 Encoding (Format 2)
0 UNIMP

1 unimplemented

2 Bicc

3 unimplemented

4 SETHI

5 unimplemented

rd
This 5-bit field is the address of the destination for a load/arithmetic (or store)
instruction. For an instruction that read/writes a double (or quad), the least
significant one (or two) bits are unused and should be supplied as zero by software.

a
 The a bit in a branch instruction annuls the execution of the following instruction
if the branch is conditional and untaken or if it is unconditional and taken.

cond
 This 4-bit field selects the condition code(s) to test for a branch instruction.

imm22
 This 22-bit field is a constant that SETHI places in the upper end of a destination
register.

disp22 and disp30
These 30-bit and 22-bit fields are word-aligned, sign-extended, PC- relative
displacements for a call or branch, respectively.

op3
 This 6-bit field (together with 1 bit from op) encodes the format 3 instructions.

i
 The i bit selects the second ALU operand for (integer) arithmetic and load/store
instructions. If i = 0, the operand is r[rs2]. If i = 1, the operand is simm13, sign-
extended from 13 to 32 bits.

asi
 This 8-bit field is the address space identifier supplied by a load/store alternate
instruction.

rs1
This 5-bit field is the address of the first r register source operand. For an instruction
that reads a double (or quad), the least significant bit (or 2 bits) are unused and
should be supplied as zero by software.

rs2
This 5-bit field is the address of the second r register source operand when i = 0. For
an instruction that reads a double- length (or quad- length) register sequence, the
least significant bit (or 2 bits) are unused and should be supplied as zero by
software.
simm13
This 13-bit field is a sign-extended 13-bit immediate value used as the second ALU
operand for an (integer) arithmetic or load/store instruction when i = 1.

1.5.2Instruction Definitions

Instruction Set
Opcode Name
LD (LDA) Load Word (from Alternate space)

ST (STA) Store Word (into Alternate space)

SWAP (SWAPA) Swap r Register with Memory (in
Alternate space)

SETHI Set High 22 bits of r Register

NOP No Operation

AND (ANDcc) And (and modify icc)

ANDN (ANDNcc) And Not (and modify icc)

OR (ORcc) Inclusive-Or (and modify icc)

ORN (ORNcc) Inclusive-Or Not (and modify icc)

XOR (XORcc) Exclusive-Or (and modify icc)

XNOR (XNORcc) Exclusive-Nor (and modify icc)

SLL Shift Left Logical

SRL Shift Right Logical

SRA Shift Right Arithmetic

ADD (ADDcc) Add (and modify icc)

SUB (SUBcc) Subtract (and modify icc)

SAVE Save callerĴs window

RESTORE Restore callerĴs window

Bicc Branch on integer condition codes

CALL Call and Link

JMPL Jump and Link

RETT Return from Trap
Ticc Trap on integer condition codes

RDASR Read Ancillary State Register

RDPSR Read Processor State Register

RDWIM Read Window Invalid Mask Register

RDTBR Read Trap Base Register

WRASR Write Ancillary State Register

WRPSR Write Processor State Register

WRWIM Write Window Invalid Mask Register

WRTBR Write Trap Base Register

Load Integer Instruction

opcode op3 operation
LD 000000 Load Word

LDA 010000 Load Word from
Alternate space

Description:

 The load integer instructions copy a word from memory into r[rd].

 The effective address for a load instruction is Ķr[rs1] + r[rs2]ķ if the i field is zero, or
 Ķr[rs1] + sign_ext(simm13)ķ if the i field is one. Instructions that load from an
alternate address space contain the address space identifier to be used for the load in
the asi field, and must contain zero in the i field or an illegal_instruction trap will
occur. Load instructions that do not load from an alternate address space access
either a user data space or system data space, according to the S bit of the PSR.

Store Integer Instruction

opcode op3 operation
ST 000100 Store Word

STA 010100 Store Word into
Alternate space

Description:

 The store integer instructions copy the word from r[rd] into memory.

 The effective address for a store instruction is Ķr[rs1] + r[rs2]ķ if the i field is zero,
or Ķr[rs1] + sign_ext(simm13)ķ if the i field is one. Instructions that store to an
alternate address space contain the address space identifier to be used for the store
in the asi field, and must contain zero in the i field or an illegal_instruction trap will
occur. Store instructions that do not store to an alternate address space access either
a user data space or system data space, according to the S bit of the PSR.

SWAP Register with Memory Instruction

opcode op3 operation
SWAP 001111 SWAP register with
memory

SWAPA 011111 SWAP register with
Alternate space memory

Description:

 The SWAP and SWAPA instructions exchange r[rd] with the contents of the word at
the addressed memory location.

 The effective address of a SWAP instruction is Ķr[rs1] + r[rs2]ķ if the i field is zero,
or

Ķr[rs1] + sign_ext(simm13)ķ if the i field is one. SWAPA must contain zero in the i
field, or an illegal_instruction trap will occur. The address space identifier used for
the memory accesses is taken from the asi field. For SWAP, the address space is either
a user or a system data space, according to the S bit in the PSR.

SETHI Instruction

opcode op op2 operation
SETHI 00 100 Set High-Order 22 bits

Description:

 SETHI zeroes the least significant 10 bits of Ķr[rd]ķ, and replaces its highorder 22
bits with the value from its imm22 field.

 SETHI does not affect the condition codes.

 A SETHI instruction with rd = 0 and imm22 = 0 is defined to be a NOP instruction.

NOP Instruction

opcode op op2 operation
NOP 00 100 No Operation

Description:

 The NOP instruction changes no program-visible state (except the PC and nPC).

 Note that NOP is a special case of the SETHI instruction, with imm22 = 0 and rd =
0.

Logical Instructions

opcode op3 operation
AND 000001 And

ANDcc 010001 And and modify icc

ANDN 000101 And Not

ANDNcc 010101 And Not and modify icc

OR 000010 Inclusive Or

ORcc 010010 Inclusive Or and modify icc

ORN 000110 Inclusive Or Not

ORNcc 010110 Inclusive Or Not and modify icc

XOR 000011 Exclusive Or

XORcc 010011 Exclusive Or and modify icc

XNOR 000111 Exclusive Nor

XNORcc 010111 Exclusive Nor and modify icc

Description:

 These instructions implement the bitwise logical operations. They compute Ķr[rs1]
operation r[rs2]ķ if the i field is zero, or Ķr[rs1] operation sign_ext(simm13)ķ if the i
field is one, and write the result into r[rd].

 ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition
codes (icc).

 ANDN, ANDNcc, ORN, and ORNcc logically negate their second operand before
applying the main (AND or OR) operation.

Shift Instructions

opcode op3 operation
SLL 100101 Shift Left Logical

SRL 100110 Shift Right Logical

SRA 100111 Shift Right Arithmetic

Description:

 The shift count for these instructions is the least significant five bits of r[rs2] if the i
field is zero, or the value in shcnt if the i field is one.

 When i is 0, the most significant 27 bits of the value in r[rs2] are ignored.When i is
1, bits 5 through 12 of the shift instruction are reserved and should be supplied as
zero by software.

 SLL shifts the value of r[rs1] left by the number of bits given by the shift count.

 SRL and SRA shift the value of r[rs1] right by the number of bits implied by the shift
count.

 SLL and SRL replace vacated positions with zeroes, whereas SRA fills vacated
positions with the most significant bit of r[rs1]. No shift occurs when the shift count
is zero.

 All of these instructions write the shifted result into r[rd].These instructions do not
modify the condition codes.

Add Instructions

opcode op3 operation
ADD 000000 Add

ADDcc 010000 Add and modify icc

Description:

 ADD and ADDcc compute Ķr[rs1] + r[rs2]ķ if the i field is zero, or Ķr[rs1] +
sign_ext(simm13)ķ if the i field is one, and write the sum into r[rd].

 ADDcc modifies the integer condition codes (icc). Overflow occurs on addition if
both operands have the same sign and the sign of the sum is different.

Subtract Instructions

opcode op3 operation
SUB 000100 Subtract

SUBcc 010100 Subtract and modify icc

Description:

 These instructions compute Ķr[rs1 rs2]ķ if the i field is zero,or Ķr[rs1]
simm13)ķ if the i field is one, and write the difference into r[rd].

 SUBcc modifies the integer condition codes (icc). Overflow occurs on subtraction if
the operands have different signs and the sign of the difference differs from the sign
of r[rs1].

SAVE and RESTORE Instructions

opcode op3 operation
SAVE 111100 Save callerĴs window

RESTORE 111101 Restore callerĴs window

Description:

 The SAVE instruction subtracts one from the CWP (modulo NWINDOWS) and
compares this value (new_CWP) against the Window Invalid Mask (WIM) register.
If the WIM bit corresponding to the new_CWP is 1, that is, (WIM and 2new_CWP) =
1, then a window_overflow trap is generated. If the WIM bit corresponding to the
new_CWP is 0, then no window_overflow trap is generated and new_CWP is
written into CWP. This causes the current w
thereby saving the callerĴs window.

 The RESTORE instruction adds one to the CWP (modulo NWINDOWS) and
compares this value (new_CWP) against the Window Invalid Mask (WIM) register.
If the WIM bit corresponding to the new_CWP is 1, that is, (WIM and 2new_CWP) =
1, then a window_underflow trap is generated. If the WIM bit corresponding to the
new_CWP = 0, then no window_underflow trap is generated and new_CWP is

rrent window,
thereby restoring the callerĴs window.

Branch on Integer Condition Codes Instructions

opcode cond operation icc test
BNE 1001 Branch on Not Equal not Z

BE 0001 Branch on Equal Z

BG 1010 Branch on Greater not
(Z or (N xor V))

BCS 0101 Branch on Carry Set C

Description:

 Conditional Bicc instructions evaluate the integer condition codes (icc), according
to the cond field of the instruction.If Ķtrueķ, the branch is taken, that is, the
instruction causes a PC-relative, delayed control transfer to the address ĶPC + (4

disp22))ķ. If Ķfalseķ, the branch is not taken.

Call and Link Instruction

opcode op operation
CALL 01 Call and Link

Description:

 The CALL instruction causes an unconditional, delayed, PC- relative control transfer
to ad disp30)ķ. Since the word displacement (disp30) field is 30 bits
wide, the target address can be arbitrarily distant. The PC- relative displacement is
formed by appending two low-order zeros to the instructionĴs 30-bit word
displacement field.

 The CALL instruction also writes the value of PC, which contains the address of the
CALL, into r[15] (out register 7).

Jump and Link Instruction

opcode op3 operation
JMPL 111000 Jump and Link

Description:

 The JMPL instruction causes a register- indirect delayed control transfer to the
address given by Ķr[rs1] + r[rs2]ķ if the i field is zero, or Ķr[rs1] + sign_ext(simm13)ķ
if the i field is one.

 The JMPL instruction copies the PC, which contains the address of the JMPL
instruction, into register r[rd].

Return from Trap Instruction

opcode op3 operation
RETT 111001 Return from Trap

Description:
 RETT is used to return from a trap handler. Under some circumstances, RETT may
itself cause a trap. If a RETT instruction does not cause a trap, it (1) adds 1 to the
CWP (modulo NWINDOWS), (2) causes a delayed control transfer
to the target address, (3) restores the S field of the PSR from the PS field, and (4) sets
the ET field of the PSR to 1. The target address is Ķr[rs1] + r[rs2]ķ if the i field is zero,
or Ķr[rs1] + sign_ext(simm13)ķ if the i field is one.

Trap on Integer Condition Codes Instruction

opcode cond operation cc test
TNE 1001 Trap on Not Equal not Z

TE 0001 Trap on Equal Z

TG 1010 Trap on Greater not (Z or (N xor V))

TCS 0101 Trap on Carry Set C

Description:
 A Ticc instruction evaluates the integer condition codes (icc) according to the cond
field of the instruction, producing either a Ķtrueķ or Ķfalseķ result.If Ķtrueķ and no
higher priority exceptions or interrupt requests are pending, then a trap_instruction
trap is generated. If Ķfalseķ, a trap_instruction trap does not occur and the
instruction behaves like a NOP.
 If a trap_instruction trap is generated, the tt field of the Trap Base Register (TBR) is
written with 128 plus the least significant seven bits of Ķr[rs1] + r[rs2]ķ if the i field
is zero, or 128 plus the least significant seven bits of Ķr[rs1] + sign_extķ if the i field
is one.

 After a taken Ticc, the processor enters supervisor mode, disables traps,decrements
the CWP (modulo NWINDOWS), and saves PC and nPC into r[17] and r[18] (local
registers 1 and 2) of the new window.

Read State Register Instructions

opcode op3 rs1 operation
RDPSR 101001 0 Read Processor State
Register

RDWIM 101010 1 Read Window Invalid
Mask Register

RDTBR 101011 2 Read Trap Base Register

RDASR 101000 3 Read Ancillary State
Register

Description:

 These instructions read the specified IU state register into r[rd].

 Ancillary state registers may include (for example) timer, counter, diagnostic, self-
test, and trapcontrol registers.

Write State Register Instructions

opcode op3 rs1 operation
WRPSR 110001 0 Write Processor State
Register

WRWIM 110010 1 Write Window
Invalid Mask Register

WRTBR 110011 2 Write Trap Base
Register

WRASR 110000 3 Write Ancillary State
Register

Description:

 WRPSR, WRWIM, WRASR, and WRTBR write Ķr[rs1] xor r[rs2]ķ if the I field is zero,
or Ķr[rs1] xor sign_ext(simm13)ķ if the i field is one, to thewritable fields of the
specified IU state register.

 Ancillary state registers may include (for example) timer, counter, diagnostic, self-
test, and trapcontrol registers.

CHAPTER TWO

MICROARCHITECTURE

2.1 INTRODUCTION

In this chapter, you will learn how to piece together a MIPS micro-processor.
 Indeed, you will puzzle out three different versions, each with different trade-
offs between performance, cost, and complexity.
To the uninitiated, building a microprocessor may seem like black magic. But
it is actually relatively straightforward, and by this point you have learned
everything you need to know. Specifically, you have learned to design combinational
and sequential logic given functional and timing specifications. You are familiar
with circuits for arithmetic and memory.
And you have learned about the MIPS architecture, which specifies the
programmer's view of the MIPS processor in terms of registers, instruc- tions,
and memory.
This chapter covers microarchitecture, which is the connection between
logic and architecture. Microarchitecture is the specific arrangement of registers,
ALUs, finite state machines (FSMs), memories, and other logic building blocks
needed to implement an architecture. A particular architecture, such as MIPS,
 may have many different microarchitectures, each with different trade-
offs of performance, cost, and complexity. They all run the same
programs, but their internal designs vary widely. We will design three
different microarchitectures in this chapter to illustrate the trade-offs.
This chapter draws heavily on David Patterson and John Hennessy's classic
MIPS designs in their text Computer Organization and Design. They have
generously shared their elegant designs, which have the virtue of illustrating a real
 commercial architecture while being relatively simple and easy to understand.

2.1.1 Architectural State and Instruction Set

Recall that a computer architecture is defined by its instruction set and
architectural state. The architectural state for the MIPS processor consists of the
program counter and the 32 registers. Any MIPS microarchitecture must contain all
of this state. Based on the current architectural state, the processor executes a
particular instruction with a particular set of data to produce a new

architectural state. Some microarchitectures contain additional
nonarchitectural state to either simplify the logic or improve performance; we
will point this out as it arises.
To keep the microarchitectures easy to understand, we consider only a subset
of the MIPS instruction set. Specifically,

We handle the following instructions:
R- type arithmetic/logic instructions: add, sub, and, or, slt
Memory instructions: lw, sw
Branches: beq

After building the microarchitectures with these instructions, we extend them
to handle addi and j. These particular instructions were chosen because they are
sufficient to write many interesting programs. Once you understand how to
implement these instructions, you can expand the hardware to handle others.

2.1.2 Design Process
We will divide our microarchitectures into two interacting parts: the
datapath and the control. The datapath operates on words of data. It contains
structures such as memories, registers, ALUs, and multiplexers.
MIPS is a 32-bit architecture, so we will use a 32-bit datapath. The control
unit receives the current instruction from the datapath and tells the datapath
how to execute that instruction. Specifically, the control unit produces
multiplexer select, register enable, and memory write signals to control the
operation of the datapath.
A good way to design a complex system is to start with hardware containing
the state elements. These elements include the memories and the architectural
state (the program counter and registers). Then, add blocks of combinational
logic between the state elements to compute the new state based on the current state.
The instruction is read from part of memory; load and store instructions then
 read or write data from another part of memory. Hence, it is often
convenient to partition the overall memory into two smaller memories, one
containing instructions and the other containing data. Figure 7.1 shows a
block diagram with the four state elements: the program counter, register file, and
instruction and data memories.
In Figure 7.1, heavy lines are used to indicate 32-bit data busses.

Medium lines are used to indicate narrower busses, such as the 5-bit address
busses on the register file. Narrow blue lines are used to indicatecontrol signals,
such as the register file write enable. We will use this convention throughout
the chapter to avoidcluttering diagrams with bus widths. Also, state elements usually
have a reset input to put them into a known state at start-up. Again, to save clutter,
this reset is not shown.
The program counter is an ordinary 32-bit register. Its output, PC, points to
the current instruction. Its input, PC_, indicates the address of the next
instruction.
The instruction memory has a single read port. 1 It takes a 32-bit instruction
 address input, A, and reads the 32-bit data (i.e., instruction) from that address
onto the read data output, RD.
The 32-element _ 32-bit register file has two read ports and one write port. The
read ports take 5-bit address inputs, A1 and A2, each specifying one of 2 5 _ 32
registers as source operands. They read the 32-bit register values onto read
data outputs RD1 and RD2, respectively. The write port takes a 5-bit address input,
 A3; a 32-bit write data input, WD; a write enable input, WE3; and a clock.
If the write enable is 1, the register file writes the data into the specified register
on the rising edge of the clock.
The data memory has a single read/write port. If the write enable, WE, is 1,
it writes data WD into address A on the rising edge of the clock. If the write
enable is 0, it reads address A onto RD.
The instruction memory, register file, and data memory are all read
combinationally. In other words, if the address changes, the new data appears
 at RD after some propagation delay; no clock is involved. They are written
only on the rising edge of the clock. In this fashion, the state of the system is
 changed only at the clock edge. The address, data, and write enable must
setup sometime before the clock edge and must remain stable until a hold
time after the clock edge.
Because the state elements change their state only on the rising edge of the clock,
they are synchronous sequential circuits. The microprocessor is built of
clocked state elements and combinational logic, so it too is a synchronous
sequential circuit. Indeed, the processor can be viewed as a giant finite state
machine, or as a collection of simpler interacting state machines.

2.1.3 MIPS Microarchitectures

In this chapter, we develop three microarchitectures for the MIPS processor
architecture: single-cycle, multicycle, and pipelined. They differ in
the way that the state elements are connected together and in the
amount of nonarchitectural state.
The single-cycle microarchitecture executes an entire instruction in one cycle.
 It is easy to explain and has a simple control unit.
Because it completes the operation in one cycle, it does not require any
nonarchitectural state. However, the cycle time is limited by the slowest
instruction.
The multicycle microarchitecture executes instructions in a series of shorter
cycles. Simpler instructions execute in fewer cycles than complicated ones.
Moreover, the multicycle microarchitecture reduces the hardware cost by
reusing expensive hardware blocks such as adders and memories. For
example, the adder may be used on several different cycles for several
purposes while carrying out a single instruction. The multicycle microprocessor
 accomplishes this by adding several nonarchitectural registers to hold
intermediate results. The multicycle processor executes only one instruction at
a time, but each instruction takes multi-
ple clock cycles.
The pipelined microarchitecture applies pipelining to the single-cycle
microarchitecture. It therefore can execute several instructions simultaneously,
 improving the throughput significantly. Pipelining must add logic to
handle dependencies between simultaneously executing instructions. It also
requires nonarchitectural pipeline registers. The added logic and registers are
worthwhile; all commercial high-performance processors use pipelining today.
We explore the details and trade-offs of these three microarchitectures in the
 subsequent sections. At the end of the chapter, we briefly mention additional
techniques that are used to get even more speed in modern high-performance
microprocessors.

2.2 PERFORMANCE ANALYSIS

As we mentioned, a particular processor architecture can have many
microarchitectures with different cost and performance trade-offs. The cost
depends on the amount of hardware required and the implementation

technology. Each year, CMOS processes can pack more transistors on a chip for
the same amount of money, and processors take advantage
of these additional transistors to deliver more performance. Precise cost
calculations require detailed knowledge of the implementation technology, but
in general, more gates and more memory mean more dollars.
This section lays the foundation for analyzing performance.
There are many ways to measure the performance of a computer system, and
 marketing departments are infamous for choosing the method that makes
 their computer look fastest, regardless of whether the measurement has any
correlation to real world performance. For example, Intel and Advanced Micro
 Devices (AMD) both sell compatible microprocessors conforming to the
IA-32 architecture. Intel Pentium III and Pentium 4 microprocessors were
 largely advertised according to clock frequency in the late 1990s and
early 2000s, because Intel offered higher clock frequencies than its
competitors. However, Intel's main competitor, AMD, sold Athlon
microprocessors that executed programs faster than Intel's chips at the
same clock frequency. What is a consumer to do?
The only gimmick- free way to measure performance is by measuring the
execution time of a program of interest to you. The computer that executes your
program fastest has the highest performance. The next best choice is to
measure the total execution time of a collection of programs that are similar
to those you plan to run; this may be necessary if you haven't written your
program yet or if somebody else who doesn't have your program is making
the measurements. Such collections of programs are called benchmarks, and the
execution times of these programs are commonly published to give some indication
of how a processor performs.
The execution time of a program, measured in seconds, is given by Equation
7.1.

The number of instructions in a program depends on the processor
architecture. Some architectures have complicated instructions that do more
work per instruction, thus reducing the number of instructions in a program.
However, these complicated instructions are often slower to execute in hardware.
The number of instructions also depends enormously on the cleverness of the

programmer. For the purposes of this chapter, we will assume that we are
executing known programs on a MIPS processor, so the number of
instructions for each program is constant, independent of the
microarchitecture.
The number of cycles per instruction, often called CPI, is the number of
clock cycles required to execute an average instruction. It is the reciprocal of
the throughput (instructions per cycle, or IPC). Different microarchitectures
have different CPIs. In this chapter, we will assume we have an ideal
memory system that does not affect the CPI. In Chapter 8, we examine how
the processor sometimes has to wait for the memory, which increases the CPI.
The number of seconds per cycle is the clock period, Tc. The clock period is
determined by the critical path through the logic on the processor. Different
microarchitectures have different clock periods. Logic and circuit designs also
significantly affect the clock period. For example, a carry- lookahead adder is
faster than a ripple-carry adder. Manufacturing advances have historically
doubled transistor speeds every 4-6 years, so a microprocessor built today will
 be much faster than one from last decade, even if the microarchitecture and
logic are unchanged.
The challenge of the microarchitect is to choose the design that minimizes the
execution time while satisfying constraints on cost and/or power consumption.
Because microarchitectural decisions affect both CPI and T c and are
influenced by logic and circuit designs, determining the best choice requires
careful analysis.
There are many other factors that affect overall computer performance. For
example, the hard disk, the memory, the graphics system, and the network
connection may be limiting factors that make processor performance
irrelevant. The fastest microprocessor in the world doesn't help surfing the
Internet on a dial-up connection. But these other factors are beyond the scope
of this book.

2.3 SINGLE-CYCLE PROCESSOR

We first design a MIPS microarchitecture that executes instructions in a single
 cycle. We begin constructing the datapath by connecting the state elements
from Figure 7.1 with combinational logic that can execute the various
instructions. Control signals determine which specific instruction is carried out by
 the datapath at any given time. The controller contains combinational logic

that generates the appropriate control signals based on the current instruction.
We conclude by analyzing the performance of the single-cycle processor.

2.3.1 Single-Cycle Datapath

This section gradually develops the single-cycle datapath, adding one piece at
a time to the state elements from Figure 7.1. The new connections are
emphasized in black (or blue, for new control signals), while the hardware that
has already been studied is shown in gray.

The program counter (PC) register contains the address of the instruction
to execute. The first step is to read this instruction from instruction memory.
Figure 7.2 shows that the PC is simply connected to the address input of the
instruction memory. The instruction memory reads out, or fetches, the 32-bit
instruction, labeled Instr.

The processor's actions depend on the specific instruction that was fetched.
First we will work out the datapath connections for the lw instruction.
Then we will consider how to generalize the datapath to handle the other
instructions.
For a lw instruction, the next step is to read the source register
containing the base address. This register is specified in the rs field of the
instruction, Instr25:21 . These bits of the instruction are connected to the
address input of one of the register file read ports, A1, as shown in Figure 7.3. The
register file reads the register value onto RD1.
The lw instruction also requires an offset. The offset is stored in the immediate field
 of the instruction, Instr15:0 . Because the 16-bit immediate might be either
positive or negative, it must be sign-extended to 32 bits, as shown in
Figure 7.4. The 32-bit sign-extended value is called SignImm. Recall from
Section 1.4.6 that sign extension simply copies the sign bit (most significant
bit) of a short input into all of the upper bits of the longer output.
Specifically, SignImm15:0 _ Instr15:0 and SignImm31:16 _ Instr15.

The processor must add the base address to the offset to find the address to
read from memory. Figure 7.5 introduces an ALU to perform this addition.
The ALU receives two operands, SrcA and SrcB. SrcA comes from the
register file, and SrcB comes from the sign-extended immediate. The ALU can
perform many operations, as was described in Section 5.2.4. The 3-bit
ALUControl signal specifies the operation. The ALU generates a 32-bit
ALUResult and a Zero flag, that indicates whether ALUResult __ 0. For a lw

 instruction, the ALUControl signal should be set to 010to add the base
address and offset. ALUResult is sent to the data memory as the address
for the load instruction, as shown in Figure 7.5.
The data is read from the data memory onto the ReadData bus, then written
back to the destination register in the register file at the end of the cycle, as
shown in Figure 7.6. Port 3 of the register file is the write port.

The destination register for the lw instruction is specified in the rt field,
Instr20:16 , which is connected to the port 3 address input, A3, of the
register file.

The ReadData bus is connected to the port 3 write data input, WD3, of the
 register file. A control signal called RegWrite is connected to the port 3
write enable input, WE3, and is asserted during a lw instruction so that the
data value is written into the register file. The write takes place on the rising
 edge of the clock at the end of the cycle.
While the instruction is being executed, the processor must compute
the address of the next instruction, PC_. Because instructions are 32 bits _ 4
bytes, the next instruction is at PC _ 4. Figure 7.7 uses another adder to
increment the PC by 4. The new address is written into the program counter on the
next rising edge of the clock.

This completes the datapath for the lw instruction. Next, let us extend the
datapath to also handle the sw instruction. Like the lw instruction, the sw
instruction reads a base address from port 1 of the register and sign-extends an
immediate. The ALU adds the base address to the immediate to find the
memory address. All of these functions are already supported by the datapath.

The sw instruction also reads a second register from the register file and writes
it to the data memory. Figure 7.8 shows the new connections forthis function. The
register is specified in the rt field, Instr20:16 of the instruction are connected
to the second register file read port, A2.
The register value is read onto the RD2 port. It is connected to the write data
 port of the data memory.

The write enable port of the data memory, WE, is controlled by MemWrite.
For a sw instruction, MemWrite _ 1, to write the data to memory; ALUControl
_ 010, to add the base address and offset; and RegWrite _ 0, because nothing
should be written to the register file.

Note that data is still read from the address given to the data memory, but
that this ReadData is ignored because RegWrite _ 0.
Next, consider extending the datapath to handle the R- type instructions add,
sub, and, or, and slt. All of these instructions read two registers from the register
file, perform some ALU operation on them, and write the result back to a
third register file. They differ only in the specific ALU operation. Hence, they
can all be handled with the same hardware, using different ALUControl signals.
Figure 7.9 shows the enhanced datapath handling R- type instructions. The
register file reads two registers. The ALU performs an operation on these two
 registers. In Figure 7.8, the ALU always received its SrcB operand from the
sign-extended immediate (SignImm). Now, we add a multiplexer to choose
SrcB from either the register file RD2 port or SignImm.

The multiplexer is controlled by a new signal, ALUSrc. ALUSrc is 0 for R- type
instructions to choose SrcB from the register file; it is 1 for lw and sw to choose
SignImm. This principle of enhancing the datapath's capabilities by adding a
multiplexer to choose inputs from several possibilities is extremely useful.
Indeed, we will apply it twice more to complete the handling of R- type
instructions.

In Figure 7.8, the register file always got its write data from the data
memory. However, R- type instructions write the ALUResult to the register file.
Therefore, we add another multiplexer to choose between ReadData and
ALUResult. We call its output Result. This multiplexer is controlled by another
new signal, MemtoReg. MemtoReg is 0 for R- type instructions to choose Result
from the ALUResult; it is 1 for lw to choose ReadData. We don't care about
the value of MemtoReg for sw, because sw does not write to the register file.
Similarly, in Figure 7.8, the register to write was specified by the rt field of
the instruction, Instr20:16 . . However, for R- type instructions, the register is
specified by the rd field, Instr15:11 . . Thus, we add a third multiplexer to
choose WriteReg from the appropriate field of the instruction.

 The multiplexer is controlled by RegDst. RegDst is 1 for R- type instructions to
choose WriteReg from the rd field, Instr15:11 ; it is 0 for lw to choose the rt
field, Instr20:16 . We don't care about the value of RegDst for sw, because sw
does not write to the register file.
Finally, let us extend the datapath to handle beq. beq compares two registers.
If they are equal, it takes the branch by adding the branch offset to the
program counter.

Recall that the offset is a positive or negative number, stored in the imm field of the
instruction, Instr31:26 .The offset indicates the number of instructions to
branch past. Hence, the immediate must be sign-extended and multiplied by
4 to get the new program counter value:
 PC_ _ PC _ 4 _ SignImm _ 4.Figure 7.10 shows the datapath modifications. The
next PC value for a taken branch, PCBranch, is computed by shifting SignImm
 left by 2 bits, then adding it to PCPlus4. The left shift by 2 is an easy way
to multiply by 4, because a shift by a constant amount involves just wires.
The two registers are compared by computing SrcA _ SrcB using the ALU. If
ALUResult is 0, as indicated by the Zero flag from the ALU, the registers are equal.
We add a multiplexer to choose PC_ from either PCPlus4 or PCBranch.
PCBranch is selected if the instruction is a branch and the Zero flag is
asserted. Hence, Branch is 1 for beq and 0 for other instructions.
For beq, ALUControl _ 110, so the ALU performs a subtraction. ALUSrc _ 0 to
 choose SrcB from the register file. RegWrite and MemWrite are 0, because a
branch does not write to the register file or memory. We don't care about the
 values of RegDst and MemtoReg, because the register file is not written.
This completes the design of the single-cycle MIPS processor datapath. We
have illustrated not only the design itself, but also the design process in
which the state elements are identified and the combinational logic connecting

 the state elements is systematically added. In the next section, we consider
how to compute the control signals that direct the operation of our datapath.

2.3.2 Single-Cycle Control

The control unit computes the control signals based on the opcode and funct
fields of the instruction, Instr31:26 and Instr5:0 . Figure 7.11 shows the entire
 single-cycle MIPS processor with the control unit attached to the datapath.

Most of the control information comes from the opcode, but R- type instructions also
 use the funct field to determine the ALU operation. Thus, we will simplify our
 design by factoring the control unit into two blocks of combinational logic,
 as shown in Figure 7.12The main decoder computes most of the outputs
from the opcode. It also determines a 2-bit ALUOp signal.
 The ALU decoder uses this ALUOp signal in conjunction with the funct field to
compute ALUControl. The meaning of the ALUOp signal is given in Table 7.1.

Table 7.2 is a truth table for the ALU decoder. Recall that the meanings of
the three ALUControl signals were given in Table 5.1. Because ALUOp is
never 11, the truth table can use don't care's X1 and 1X instead of 01 and
10 to simplify the logic. When ALUOp is 00 or 01, the ALU should add or
 subtract, respectively. When ALUOp is 10, the decoder examines the funct
field to determine the ALUControl. Note that, for the R- type instructions we
implement, the first two bits of the funct field are always 10, so we may ignore
them to simplify the decoder.
The control signals for each instruction were described as we built the
datapath. Table 7.3 is a truth table for the main decoder that summarizes
the control signals as a function of the opcode. All R- type instructions
use the same main decoder values; they differ only in the ALU decoder
output. Recall that, for instructions that do not write to the register file (e.g.,
sw and beq), the RegDst and MemtoReg control signals are don't cares (X); the
 address and data to the register write port do not matter because RegWrite is
 not asserted. The logic for the decoder can be designed using your favorite
techniques for combinational logic design.

Example SINGLE-CYCLE PROCESSOR OPERATION

Determine the values of the control signals and the portions of the datapath that are
used when executing an or instruction.

Solution: Figure 7.13 illustrates the control signals and flow of data during
execution of the or instruction. The PC points to the memory location holding
the instruction, and the instruction memory fetches this instruction.

The main flow of data through the register file and ALU is represented with
a dashed blue line. The register file reads the two source operands specified
by Instr25:21 and Instr20:16 . SrcB should come from the second port of the
register file (not SignImm), so ALUSrc must be 0. or is an R- type instruction, so
ALUOp is 10, indicating that ALUControl should be determined from the funct
 field to be 001. Result is taken from the ALU, so MemtoReg is 0. The result is written
to the register file, so RegWrite is 1. The instruction does not write memory,
so MemWrite _ 0.The selection of the destination register is also shown
with a dashed blue line. The destination register is specified in the rd field,
Instr15:11 , so RegDst 1.

The updating of the PC is shown with the dashed gray line. The instruction
is not a branch, so Branch _ 0 and, hence, PCSrc is also 0. The PC gets its
next value from PCPlus4.
Note that data certainly does flow through the nonhighlighted paths, but that

the value of that data is unimportant for this instruction. For example, the
immediate is sign-extended and data is read from memory, but these values
do not influence the next state of the system.

2.3.3 More Instructions

We have considered a limited subset of the full MIPS instruction set. Adding
support for the addi and j instructions illustrates the principle of how to
handle new instructions and also gives us a sufficiently rich instruction set to
 write many interesting programs. We will see that supporting some
instructions simply requires enhancing the main decoder, whereas
supporting others also requires more hardware in the datapath.

Example addi INSTRUCTION

The add immediate instruction, addi, adds the value in a register to the immediate
and writes the result to another register. The datapath already is capable of
this task. Determine the necessary changes to the controller to support addi.

Solution: All we need to do is add a new row to the main decoder truth
table showing the control signal values for addi, as given in Table 7.4. The
result should be written to the register file, so RegWrite _ 1. The destination register
is specified in the rt field of the instruction, so RegDst _ 0. SrcB comes from
the immediate, so ALUSrc _ 1. The instruction is not a branch, nor does it
write memory, so Branch _ MemWrite _ 0. The result comes from the ALU, not
memory, so MemtoReg _ 0. Finally, the ALU should add, so ALUOp _ 00.

Example j INSTRUCTION

The jump instruction, j, writes a new value into the PC. The two least
significant bits of the PC are always 0, because the PC is word aligned (i.e.,
always a multiple of 4). The next 26 bits are taken from the jump address
field in Instr25:0 . The upper four bits are taken from the old value of the PC. The
existing datapath lacks hardware to compute PC_ in this fashion. Determine the
necessary changes to both the datapath and controller to handle j.
Solution: First, we must add hardware to compute the next PC value, PC_, in the case
 of a j instruction and a multiplexer to select this next PC, as shown in Figure
7.14. The new multiplexer uses the new Jump control signal.
Now we must add a row to the main decoder truth table for the j instruction
and a column for the Jump signal, as shown in Table 7.5. The Jump control
signal is 1 for the j instruction and 0 for all others. j does not write the register file
or memory, so RegWrite _ MemWrite _ 0. Hence, we don't care about the
computation done in the datapath, and RegDst _ ALUSrc _ Branch _
MemtoReg _ ALUOp _ X.

2.3.4 Performance Analysis
Each instruction in the single-cycle processor takes one clock cycle, so the CPI is 1.
 The critical path for the lw instruction is shown in Figure 7.15 with a heavy
dashed blue line. It starts with the PC loading a new address on the rising edge of
the clock. The instruction memory reads the next instruction. The register file
reads SrcA. While the register file is reading, the immediate field is sign-
extended and selected at the ALUSrc multiplexer to determine SrcB. The ALU
adds SrcA and SrcB to find the effective address. The data memory reads from
this address. The MemtoReg multiplexer selects ReadData. Finally, Result must
setup at the register file before the next rising clock edge, so that it can be properly
written. Hence, the cycle time is

In most implementation technologies, the ALU, memory, and register file accesses
are substantially slower than other operations. Therefore, the cycle time
simplifies to

The numerical values of these times will depend on the specific implementation
technology.

Other instructions have shorter critical paths. For example, R- type instructions
 do not need to access data memory. However, we are disciplining
ourselves to synchronous sequential design, so the clock period is constant
and must be long enough to accommodate the slowest instruction.

Example SINGLE-CYCLE PROCESSOR PERFORMANCE
Ben Bitdiddle is contemplating building the single-cycle MIPS processor in a 65 nm
CMOS manufacturing process. He has determined that the logic elements have the
delays given in Table 7.6. Help him compare the execution time for a
program with 100 billion instructions.

Solution: According to Equation 7.3, the cycle time of the single-cycle processor is
Tc1 _ 30 _ 2(250) _ 150 _ 2(25) _ 200 _ 20 _ 950 ps. We use the subscript "1" to
 distinguish it from subsequent processor designs. According to Equation 7.1,
the total execution time is T 1 _ (100 _ 10 9 instructions)(1 cycle/instruction)

CHAPTER TRHEE

CODING

-- Adder
library ieee;

use ieee.std_logic_1164.all ;

use ieee.std_logic_arith.all;

entity adder is

 port(a: in unsigned(31 downto 0);

 b: in unsigned(31 downto 0);

 c: out unsigned(31 downto 0));

 end adder;

 architecture arc_adder of adder is

 begin

 c<=a + b;

 end arc_adder;

-- right _shift
library ieee;

use ieee.std_logic_1164.all;

entity r_shift is

 port(a : in std_logic_vector(31 downto 0);

 sel : in integer range 0 to 31;

 c : out std_logic_vector(31 downto 0));

end r_shift;

architecture arc_r_shift of r_shift is

sub type vector is std_logic_vector(31 downto 0);

type matrix is array(31 downto 0) of vector;

signal row : matrix;

begin

 row(0)<=a;

 g_1 : for i in 1 to 31 generate

 row(i)<='0' & row(i - 1)(31 downto 1);

 end generate;

 c<=row(sel);

end arc_r_shift;

- - arithmatic _r ight_shift
library ieee;

use ieee.std_logic_1164.all;

entity a_r_shift is

 port(a : in std_logic_vector(31 downto 0);

 sel : in integer range 0 to 31;

 c : out std_logic_vector(31 downto 0));

end a_r_shift;

architecture arc_a_r_shift of a_r_shift is

subtype vector is std_logic_vector(31 downto 0);

type matrix is array(31 downto 0) of vector;

signal row : matrix;

signal s_1 : std_logic;

begin

 row(0)<=a;

 g_1 : for i in 1 to 31 generate

 row(i)<=a(31) & row(i - 1)(31 downto 1);

 end generate;

 c<=row(sel);

end arc_a_r_shift;

-- arithmatic_left_shift
library ieee;

use ieee.std_logic_1164.all;

entity l_shift is

 port(a : in std_logic_vector(31 downto 0);

 sel : in integer range 0 to 31;

 c : out std_logic_vector(31 downto 0));

end l_shift;

architecture arc_l_shift of l_shift is

subtype vector is std_logic_vector(31 downto 0);

type matrix is array(31 downto 0) of vector;

signal row : matrix;

begin

 row(0)<=a;

 g_1 : for i in 1 to 31 generate

 row(i)<=row(i - 1)(30 downto 0) & '0';

 end generate;

 c<=row(sel);

end arc_l_shift;

-- arithmatic_ shift
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity arith_sh is

 port(a_1: in unsigned(31 downto 0);

 b_1: in unsigned(31 downto 0);

 sel: in unsigned(2 downto 0);

 c: out unsigned(31 downto 0);

 negative: out std_logic;

 zero: out std_logic;

 over_flow: out std _logic;

 carry:out std_logic;

 borrow: out std_logic);

end arith_sh;

architecture arc_arith_sh of arith_sh is

signal s_1,s_2,s_3,s_4,a,b : std_logic_vector(31 downto 0);

signal sel_sh: integer range 0 to 31;

begin

 a<=conv_std_logic_vector(a_ 1,32);

 b<=conv_std_logic_vector(b_1,32);

 sel_sh<=conv_integer(b_1(4 downto 0));

 u1: entity work.l_shift(arc_l_shift) port

map(a=>a,sel=>sel_sh,c=>s_2);

 u2: entity work.r_shift(arc_r_shift) port

map(a=>a,sel=>sel_sh,c=>s_3);

 u3: entity work.a_r_s hift(arc_a_r_shift) port

map(a=>a,sel=>sel_sh,c=>s_4);

 with sel select

 s_1<=a+b when "000",

 a+((not b)+1) when "001",

 s_2 when "010",

 s_3 when "011",

 s_4 when "100",

 (others=>'0') when others;

 zero<='1' when s_1=conv_std_l ogic_vector(0,32) else

 '0';

negative<=s_1(31);

over_flow<=(((not a(31)) and (not b(31)) and s_1(31)) or (a(31) and

b(31) and (not s_1(31))))

or (((not a(31)) and b(31) and s_1(31)) or (a(31) and (not b(31)) and

(not s_1(31)))); -- with overflow e nable

carry<=((not a(31)) and (not b(31)) and s_1(31)) or (a(31) and b(31)

and (not s_1(31))); -- with add enable

borrow<=((not a(31)) and (not b(31)) and s_1(31)) or (a(31) and (not

b(31)) and s_1(31)); -- with sub enable

c<=unsigned(s _1);

end arc_arith_sh;

-- logic
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity logic is

 port(a_1 : in unsigned(31 downto 0);

 b_1 : in unsigned(31 downto 0);

 sel : in unsigned(2 downto 0);

 c : out unsigned(31 downto 0));

end logic;

architecture arc_logic of logic is

signal a,b,s_1 : std_logic_vector(31 downto 0);

begin

 a<=conv_std_logic_vector(a_1,32);

 b<=conv_std_logic_vector(b_1,32) ;

with sel select

 s_1<= a and b when "000",

 a or b when "001",

 a xor b when "010",

 a nand b when "011",

 a nor b when "100",

 a xnor b when "101",

 (others=>'0') when others;

 c<=unsigned(s_1);

end arc_logic;

-- ALU

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity alu is

 port(a: unsigned(31 downto 0);

 b: unsigned(31 downto 0);

 sel: in unsigned(3 downto 0);

 c: out unsigned(3 1 downto 0);

 negative: out std_logic;

 zero: out std_logic;

 over_flow: out std_logic;

 carry:out std_logic;

 borrow: out std_logic);

 end alu;

architecture arc_alu of alu is

signal s_1,s_2:unsigned(31 downto 0);

begin

 u1: entity work.arith_sh(arc_arith_sh) port map(a_1=>a,b_1=>b,sel=>

sel(2 downto

0),c=>s_1,negative=>negative,zero=>zero,over_flow=>over_flow,carry=>c

arry,

borrow=>borrow);

 u2: entity work.logic(arc_logic) port map(a_1=>a,b_1=>b,sel=>sel(2

downto 0),c=>s _2);

 with sel(3) select

 c<=s_1 when '0',

 s_2 when others;

end arc_alu;

-- instruction memory
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity rom is

port (instr_addr : in unsigned(7 downto 0);

instr_out : out unsigned(31 downto 0)

);

end rom;

architecture arc_rom of rom is

type mem_type is array(0 to 255) of unsigned(7 downto 0);

signal mem : mem_type;

signal s_1,s_2,s_3: unsigned(7 downto 0);

begin

---------------------- Program -------------------------------- ---

mem(3)<=x"82";mem(2)<=x"00";mem(1)<=x"20";mem(0)<=x"05"; --

ADD simm=5

mem(7)<=x"84";mem(6)<=x"20";mem(5)<=x"20";mem(4)<=x"05"; --

SUB simm= - 5

mem(11)<=x"86";mem(10)<=x"80";mem(9)<=x"40";mem(8)<=x"02"; --

ADDCC

mem(15)<=x"02";mem(14)<=x"80";mem(13)<=x"00";mem(12)<=x"04"; --

BE to 28

mem(19)<=x"06";mem(18)<=x"00";mem(17)<=x"40";mem(16)<=x"02"; --

add

mem(23)<=x"08";mem(22)<=x"00";mem(21)<=x"40";mem(20)<=x"02"; --

sub

mem(27)<=x"00";mem(26)<=x"00"; mem(25)<=x"00";mem(24)<=x"02"; --

branch

mem(31)<=x"92";mem(30)<=x"00";mem(29)<=x"20";mem(28)<=x"f1"; --

ADD 28

mem(35)<=x"81";mem(34)<=x"e0";mem(33)<=x"20";mem(32)<=x"01"; --

SAVE

mem(39)<=x"f2";mem(38)<=x"a0";mem(37)<=x"00";mem(36)<=x "01"; --

STA

mem(43)<=x"40";mem(42)<=x"00";mem(41)<=x"00";mem(40)<=x"09"; --

CALL 36

mem(47)<=x"40";mem(46)<=x"00";mem(45)<=x"00";mem(44)<=x"09"; --

--------------- interrupt routine --------------------------------

mem(51)<=x"cc";mem(50)<= x"80";mem(49)<= x"00";mem(48)<= x"00"; --

LDA rd=6

mem(55)<=x"b2";mem(54)<= x"26";mem(53)<= x"60";mem(52)<= x"01"; --

SUB i=1 rd,rs=25 simm=1

mem(59)<=x"cc";mem(58)<= x"a0";mem(57)<= x"00";mem(56)<= x"01"; --

STA

mem(63)<=x"8e";mem(62)<= x"00";mem(61)<= x"20";mem(60)<= x"0f"; --

ADD i=1 rd=7 simm=15

mem(67)<=x"8e";mem(66)<= x"a1";mem(65)<= x"e0";mem(64)<= x"01"; --

SUBCC i=1 rs=7 rd=7

mem(71)<=x"12";mem(70)<= x"bf";mem(69)<= x"ff";mem(68)<= x"ff"; --

BNE to 60

mem(75)<=x"8c";mem(74)<= x"a1";mem(73)<= x"a0";mem(72)<= x"01"; --

subCC i=1 rs=6 rd=6

mem(79)<=x"02";mem(78)<= x"bf";mem(77)<= x"ff";mem(76)<= x"f6"; --

BE to 36

mem(83)<=x"40";mem(82)<= x"00";mem(81)<= x"00";mem(80)<= x"0e"; --

CALL

----- ---

 s_1<=instr_addr+1;

 s_2<=instr_addr+2;

 s_3<=instr_addr+3;

instr_out(7 downto 0) <= mem(conv_integer(instr_addr)); -- read

instr_out(15 downto 8) <= mem(conv_integer(s_1)); -- read

instr_ out(23 downto 16) <= mem(conv_integer(s_2)); -- read

instr_out(31 downto 24) <= mem(conv_integer(s_3)); -- read

end arc_rom;

-- prog counter
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity prog_count is

 port(clk: in st d_logic;

 reset:in std_logic;

 en_pc:in std_logic;

 pc_in: in unsigned(31 downto 0);

 pc_out: out unsigned(31 downto 0));

 end prog_count;

 architecture arc_prog_count of prog_count is

 begin

 process(clk)

 begin

 if(en_ pc='1') then

 if(reset='1') then

 pc_out<=x"00000000";

 elsif(clk'event and clk='1') then

 pc_out<=pc_in;

 end if;

 end if;

 end process;

 end arc_prog_count;

-- shift extend
library ieee;

use ieee.std_logic_1164.al l;

use ieee.std_logic_arith.all;

entity shift_extend is

 port(a: in unsigned(21 downto 0);

 c: out unsigned(31 downto 0));

end shift_extend;

architecture arc_shift_extend of shift_extend is

begin

 c<=("11111111"&a&"00") when a(21)='1' else

 ("00000000"&a&"00");

end arc_shift_extend;

-- sign extend
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity sign_extend is

 port(a: in unsigned(12 downto 0);

 c: out unsigned(31 downto 0));

end sign_extend;

archite cture arc_sign_extend of sign_extend is

begin

 c<=("1111111111111111111"&a) when a(12)='1' else

 ("0000000000000000000"&a);

end arc_sign_extend;

-- zero extend
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity zero_e xtend is

 port(a: in unsigned(4 downto 0);

 c: out unsigned(31 downto 0));

end zero_extend ;

architecture arc_ zero_extend of zero_extend is

begin

 c<=conv_unsigned(0,27)&a;

end zero_extend ;

-- mux 2X1
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity mux_2 is

 port(a: in unsigned(31 downto 0);

 b: in unsigned(31 downto 0);

 sel: in std_logic;

 c: out unsigned(31 downto 0));

end mux_2;

architecture arc_mux_2 of mux_2 is

begin

 c<=a when sel='0' else

 b;

end arc_mux_2;

-- mux 4X1
library ieee;

use ieee.std_logic_arith.all;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity mux_4 is

 port(a: in unsigned(31 downto 0);

 b: in unsigned(31 downto 0);

 d: in unsign ed(31 downto 0);

 e: in unsigned(31 downto 0);

 sel: in unsigned(1 downto 0);

 c: out unsigned(31 downto 0));

end mux_4;

architecture arc_mux_4 of mux_4 is

signal sel_int: integer range 0 to 3;

begin

 sel_int<=conv_integer(sel);

 c<=a when sel_int=0 else

 b when sel_int=1 else

 d when sel_int=2 else

 e;

end arc_mux_4;

-- mux 8X1
library ieee;

use ieee.std_logic_arith.all;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity mux_8 is

 port(a: in unsigned(31 downto 0);

 b: in unsigned(31 downto 0);

 d: in unsigned(31 downto 0);

 e: in unsigned(31 downto 0);

 f: in unsigned(31 downto 0);

 g: in unsigned(31 downto 0);

 h: in unsigned(31 downto 0);

 k: in unsi gned(31 downto 0);

 sel: in unsigned(2 downto 0);

 c: out unsigned(31 downto 0));

end mux_8;

architecture arc_mux_8 of mux_8 is

signal sel_int: integer range 0 to 7;

begin

 sel_int<=conv_integer(sel);

 c<=a when sel_int=0 else

 b when se l_int=1 else

 d when sel_int=2 else

 e when sel_int=3 else

 f when sel_int=4 else

 g when sel_int=5 else

 h when sel_int=6 else

 k;

end arc_mux_8;

-- adder_4
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith .all;

entity add_4 is

 port(add_in: in unsigned(31 downto 0);

 add_out: out unsigned(31 downto 0));

 end add_4;

 architecture arc_add_4 of add_4 is

 begin

 add_out<=add_in + 4;

 end arc_add_4;

-- reg_8
library ieee;

use ieee.std_logic_ 1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity reg_8 is

 port(clk: in std_logic;

 add_1: in unsigned(4 downto 0);

 add_2: in unsigned(4 downto 0);

 add_3: in unsigned(4 downto 0);

 data_in: in unsi gned(31 downto 0);

 write_en: in std_logic;

 data_1: out unsigned(31 downto 0);

 data_2: out unsigned(31 downto 0);

 data_3: out unsigned(31 downto 0));

end reg_8;

architecture arc_reg_8 of reg_8 is

subtype vector is unsigned(31 d ownto 0);

type matrix is array(0 to 7) of vector;

signal reg: matrix :=(others=>(others=>'0'));

signal add_11: unsigned(2 downto 0);

signal add_22: unsigned(2 downto 0);

signal add_33: unsigned(2 downto 0);

signal s_1,s_2: std_logic;

signal s_3: integer ra nge 0 to 7;

begin

 add_11<=add_1(2 downto 0);

 add_22<=add_2(2 downto 0);

 add_33<=add_3(2 downto 0);

 s_1<= not(add_3(4) or add_3(3));

 s_2<=s_1 and write_en;

 s_3<=conv_integer(add_33);

 data_1<=reg(conv_integer(add_11));

 data_2<=reg(conv_in teger(add_22));

 data_3<=reg(conv_integer(add_33));

 process(clk,s_2)

 begin

 if(clk'event and clk='1') then

 if(s_2='1') then

 if(s_3=0) then

 reg(s_3)<=x"00000000";

 else reg(s_3)<=data_in;

 end if;

 end if;

 end if;

 end process;

end arc_reg_8;

-- reg_32
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity reg_32 is

 port(clk: in std_logic;

 add_1: in unsigned(4 downto 0);

 add_2: in unsigned(4 downto 0);

 add_3: in unsigned(4 downto 0);

 data_in: in unsigned(31 downto 0);

 write_en: in std_logic;

 current_window: in std_logic;

 data_1: out unsigned(31 downto 0);

 data_2 : out unsigned(31 downto 0);

 data_3: out unsigned(31 downto 0));

end reg_32;

architecture arc_reg_32 of reg_32 is

subtype vector is unsigned(31 downto 0);

type matrix is array(0 to 31) of vector;

signal reg: matrix :=(others=>(others=>'0'));

signa l add_11,add_12: unsigned(4 downto 0);

signal add_21,add_22: unsigned(4 downto 0);

signal add_31,add_32: unsigned(4 downto 0);

signal s_1,s_2: std_logic;

signal s_3: integer range 0 to 31;

begin

 s_1<=add_3(4) or add_3(3);

 s_2<=s_1 and write_en;

 s_3< =conv_integer(add_32);

 add_11<=add_1 - 8;

 add_12<=add_11 when current_window='1' else

 add_11 + 16;

 add_21<=add_2 - 8;

 add_22<=add_21 when current_window='1' else

 add_21 + 16;

 add_31<=add_3 - 8;

 add_32<=add_31 when current _window='1' else

 add_31 + 16;

 data_1<=reg(conv_integer(add_12));

 data_2<=reg(conv_integer(add_22));

 data_3<=reg(conv_integer(add_32));

 process(clk,s_2)

 begin

 if(clk'event and clk='1') then

 if(s_2='1') then

 r eg(s_3)<=data_in;

 end if;

 end if;

 end process;

end arc_reg_32;

-- register file
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity register_file is

 port(clk: in std_logic;

 addr_1: in unsigned(4 downto 0);

 addr_2: in unsigned(4 downto 0);

 addr_3: in unsigned(4 downto 0);

 data_in: in unsigned(31 downto 0);

 write_en: in std_logic;

 current_window: in std_logic;

 data_1: out unsign ed(31 downto 0);

 data_2: out unsigned(31 downto 0);

 data_3: out unsigned(31 downto 0));

end register_file ;

architecture arc_ register_file of register_file is

signal s_1,s_2,s_3: unsigned(31 downto 0);

signal s_4,s_5,s_6: unsigned(31 downto 0);

signal s_7,s_8,s_9: std_logic;

begin

 u1: entity work.reg_32(arc_reg_32) port

map(clk=>clk,add_1=>addr_1,add_2=>addr_2,add_3=>addr_3,data_in=>data_

in,

write_en=>write_en,current_window=>current_window,data_1=>s_1,data_2=

>s_2,data_3=>s_3);

 u2: e ntity work.reg_8(arc_reg_8) port

map(clk=>clk,add_1=>addr_1,add_2=>addr_2,add_3=>addr_3,data_in=>data_

in,

write_en=>write_en,data_1=>s_4,data_2=>s_5,data_3=>s_6);

 s_7<=addr_1(4) or addr_1(3);

 s_8<=addr_2(4) or addr_2(3);

 s_9<=addr_3(4) or addr_3(3);

 data_1<=s_1 when s_7='1' else

 s_4 when s_7='0';

 data_2<=s_2 when s_8='1' else

 s_5 when s_8='0';

 data_3<=s_3 when s_9='1' else

 s_6 when s_9='0';

end arc_ register_file ;

-- status register
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity status_register is

 port(clk: in std_logic;

 reset: in std_logic;

 en_icc: in std_logic;

 negative: in std_logic;

 zero: in std_logic;

 over_flow: in std_logic;

 carry:in std_logic;

 borrow: in std_logic;

 addr_1: in unsigned(1 downto 0);

 data_in: in unsigned(31 downto 0);

 write_en: in std_logic;

 trap_type: in unsigned(7 downto 0);

 data_ out,trap_register,window_invalid: out unsigned(31 downto

0);

 current_window: out std_logic;

 flags: out unsigned(3 downto 0));

end status_register;

architecture arc_status_register of status_register is

subtype vector is unsigned(31 downto 0);

type matrix is array(0 to 3) of vector;

signal reg: matrix :=(others=>(others=>'0'));

begin

 data_out<=reg(conv_integer(addr_1));

 window_invalid<=reg(1);

 trap_register<=reg(2);

 current_window<=reg(0)(0);

 flags(3 downto 0)<=reg(0)(23 downto 20);

process(clk,reset,negative,zero,over_flow,carry,borrow,trap_type,data

_in,en_icc)

 begin

 if(clk'event and clk='1') then

 if(reset='1') then

 reg(0)<=x"00000001";

 reg(1)(1 downto 0)<="11";

 reg(1)(31 downto 2)<=x"000 0000"&"00";

 reg(2)(3 downto 0)<=x"0";

 reg(2)(31 downto 12)<=x"00000";

 else

 if(write_en='1') then

 case addr_1 is

 when "00"=>

 reg(0)(13 downto 0)<=data_in(13 downto 0);

 reg(0)(19 downto 14)<="000000";

 reg(0)(31 downto 24)<=x"3a";

 when "01"=>

 reg(1)(1 downto 0)<="11";

 reg(1)(31 downto 2)<=x"0000000"&"00";

 when "10"=>

 reg(2)(3 downto 0)<="0000";

 reg(2)(31 downto 12)<=x" 00000";

 when "11"=>

 reg(3)<=data_in;

 when others=>null;

 end case;

 end if;

 end if;

 end if;

 if(en_icc='1')then

 reg(0)(20)<=(carry or borrow);

 reg(0)(21)<=over_flow ;

 reg(0)(22)<=zero ;

 reg(0)(23)<=negative ;

 end if;

 reg(2)(11 downto 4)<=trap_type;

 end process;

end arc_status_register;

-- window trap
library ieee;

use ieee.std_logic _1164.all;

use ieee.std_logic_arith.all;

entity window_trap is

 port(a: in unsigned(4 downto 0);

 b: in unsigned(31 downto 0);

 en_trap: out std_logic);

 end window_trap;

architecture arc_window_trap of window_trap is

begin

 en_trap<=n ot b(conv_integer(a));

end arc_window_trap;

----- -- ======CACHE========-----

-- set0
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity set0 is

 port(clk: in std_logic;

 address: in unsigned(31 downto 0);

 data_in: in unsigned(31 downto 0);

 write_en: in std_logic;

 valid: in std_logic;

 darity: in std_logic;

 data_out: out unsigned(31 downto 0);

 hit: out std_logic;

 least: out std_logic;

 d_0,d_1: out s td_logic;

 tag0: out unsigned(24 downto 0);

 tag1: out unsigned(24 downto 0));

end set0;

architecture arc_set0 of set0 is

type mem_type is array(0 to 3) of unsigned(31 downto 0);

signal block_0 : mem_type;

signal block_1 : mem_type;

signal tag _0 : unsigned(24 downto 0);

signal tag_1 : unsigned(24 downto 0);

signal address_tag: unsigned(24 downto 0);

signal equal_0,equal_1,hit_0,hit_1,s,least_disabled: std_logic:='0';

signal valid_0,valid_1,least_used: std_logic:='0';

signal data_0,data_1: unsig ned(31 downto 0);

signal block_offset: unsigned(1 downto 0);

signal set_sel: unsigned(2 downto 0);

begin

 address_tag<=address(31 downto 7);

 block_offset<=address(3 downto 2);

 set_sel<=address(6 downto 4);

 s<= (not (set_sel(0))) and (not (set_se l(1))) and (not

(set_sel(2)));

 equal_0<='1' when address_tag=tag_0 else

 '0';

 equal_1<='1' when address_tag=tag_1 else

 '0';

 hit_0<=equal_0 and valid_0;

 hit_1<=equal_1 and valid_1;

 hit<=hit_0 or hit _1;

 least_used<='1' when (s='1' and hit_1='1' and darity='1') else

 '0' when (s='1' and hit_0='1' and darity='1') else

 least_used;

mux_4_0:entity work.mux_4(arc_mux_4) port

map(a=>block_0(0),b=>block_ 0(1),d=>block_0(2) ,e=>block_0(3) ,sel=>bloc

k_offset,

c=>data_0);

 mux_4_1:en tity work.mux_4(arc_mux_4) port

map(a=>block_1(0),b=>block_1(1),d=>block_1(2),e=>block_1(3),sel=>bloc

k_offset,

c=>data_1);

 mux_2_0:entity work.mux_2(arc_mux_2) port

map(a=>data_0,b=>data_1,s el=>hit_1,c=>data_out);

process(clk,write_en,address_tag,block_offset,data_in,hit_0,darity)

 begin

 if(clk'event and clk='1') then

 if(s='1')then

 if(write_en='1')then

 if(valid_0='0' or least_disabled='1' or hit_0='1')then

 block_0(conv_integer(block_offset))<=data_in;

 tag_0<=address_tag;

 valid_0<=valid;

 d_0<=darity;

 else

 block_1(conv_integer(block_offset))<=data_in;

 tag_1<=address_tag;

 valid_1<=valid;

 d_1<=darity;

 end if;

 end if;

 end if;

 end if;

 end process;

 least_disabled<=least_used and (not darity);

 tag0<=tag_0;

 tag1<=tag _1;

 least<=least_used;

 end arc_set0;

-- set1
library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity set1 is

 port(clk: in std_logic;

 address: in unsigned(31 downto 0);

 data_in: in unsigned(31 downto 0);

 write_en: in std_logic;

 valid: in std_logic;

 darity: in std_logic;

 data_out: out unsigned(31 downto 0);

 hit: out std_logic;

 least: out std_logic;

